Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shan-e-Ahmed Raza & Gillian Prince & John P Clarkson & Nasir M Rajpoot, 2015. "Automatic Detection of Diseased Tomato Plants Using Thermal and Stereo Visible Light Images," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-20, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yulia Resti & Chandra Irsan & Adinda Neardiaty & Choirunnisa Annabila & Irsyadi Yani, 2023. "Fuzzy Discretization on the Multinomial Naïve Bayes Method for Modeling Multiclass Classification of Corn Plant Diseases and Pests," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
- Tengxiang Yang & Chengqian Jin & Youliang Ni & Zhen Liu & Man Chen, 2023. "Path Planning and Control System Design of an Unmanned Weeding Robot," Agriculture, MDPI, vol. 13(10), pages 1-15, October.
- Tiago Domingues & Tomás Brandão & Ricardo Ribeiro & João C. Ferreira, 2022. "Insect Detection in Sticky Trap Images of Tomato Crops Using Machine Learning," Agriculture, MDPI, vol. 12(11), pages 1-19, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maimunah Mohd Ali & Norhashila Hashim & Samsuzana Abd Aziz & Ola Lasekan, 2022. "Characterisation of Pineapple Cultivars under Different Storage Conditions Using Infrared Thermal Imaging Coupled with Machine Learning Algorithms," Agriculture, MDPI, vol. 12(7), pages 1-17, July.
- Ganbayar Batchuluun & Se Hyun Nam & Kang Ryoung Park, 2022. "Deep Learning-Based Plant Classification Using Nonaligned Thermal and Visible Light Images," Mathematics, MDPI, vol. 10(21), pages 1-18, November.
- Ganbayar Batchuluun & Se Hyun Nam & Chanhum Park & Kang Ryoung Park, 2022. "Super-Resolution Reconstruction-Based Plant Image Classification Using Thermal and Visible-Light Images," Mathematics, MDPI, vol. 11(1), pages 1-22, December.
- Alejandro Pena & Juan C. Tejada & Juan David Gonzalez-Ruiz & Mario Gongora, 2022. "Deep Learning to Improve the Sustainability of Agricultural Crops Affected by Phytosanitary Events: A Financial-Risk Approach," Sustainability, MDPI, vol. 14(11), pages 1-28, May.
- Aneta Saletnik & Bogdan Saletnik & Grzegorz Zaguła & Czesław Puchalski, 2024. "Raman Spectroscopy for Plant Disease Detection in Next-Generation Agriculture," Sustainability, MDPI, vol. 16(13), pages 1-18, June.
More about this item
Keywords
plant diseases and pests; classification; detection; forecasting; precision farming; machine learning; smart farming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1350-:d:903527. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.