IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1309-d897936.html
   My bibliography  Save this article

An Improved YOLOv5-Based Tapping Trajectory Detection Method for Natural Rubber Trees

Author

Listed:
  • Zejin Sun

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Hui Yang

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Zhifu Zhang

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Junxiao Liu

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
    Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China)

  • Xirui Zhang

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
    Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China)

Abstract

The object detection algorithm is one of the core technologies of the intelligent rubber tapping robot, but most of the existing detection algorithms cannot effectively meet the tapping trajectory detection of natural rubber trees in the complex forest environment. This paper proposes a tapping trajectory detection method for natural rubber trees based on an improved YOLOv5 model to accomplish fast and accurate detection. Firstly, the coordinate attention (CA) mechanism is added to the Backbone network to embed the location information into the channel attention, which effectively improves the detection accuracy. Secondly, a module called convolution and GhostBottleneck (CGB) is designed, based on the Ghost module, to substitute the Cross Stage Partial Network (CSP) module in the Neck network, which ensures the detection accuracy while reducing model parameters. Finally, the EIoU loss function is introduced to enable a more accurate regression of the model. The experimental results show that the overall performance of the YOLOv5-CCE model outperforms the original YOLOv5 and other classical lightweight detection algorithms. Compared with the original YOLOv5 model, the YOLOv5-CCE model has a 2.1% improvement in mAP value, a 2.5% compression of model parameters, and a 7.0% reduction in the number of floating point operations (FLOPs). Therefore, the improved model can fully meet the requirements of real-time detection, providing a robust detection method for rubber tapping robots.

Suggested Citation

  • Zejin Sun & Hui Yang & Zhifu Zhang & Junxiao Liu & Xirui Zhang, 2022. "An Improved YOLOv5-Based Tapping Trajectory Detection Method for Natural Rubber Trees," Agriculture, MDPI, vol. 12(9), pages 1-19, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1309-:d:897936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuandong Zhang & Huali Ding & Qinfeng Shi & Yunfei Wang, 2022. "Grape Cluster Real-Time Detection in Complex Natural Scenes Based on YOLOv5s Deep Learning Network," Agriculture, MDPI, vol. 12(8), pages 1-12, August.
    2. Haiqing Wang & Shuqi Shang & Dongwei Wang & Xiaoning He & Kai Feng & Hao Zhu, 2022. "Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamna Waheed & Waseem Akram & Saif ul Islam & Abdul Hadi & Jalil Boudjadar & Noureen Zafar, 2023. "A Mobile-Based System for Detecting Ginger Leaf Disorders Using Deep Learning," Future Internet, MDPI, vol. 15(3), pages 1-23, February.
    2. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. Anwen Liu & Yang Xiang & Yajun Li & Zhengfang Hu & Xiufeng Dai & Xiangming Lei & Zhenhui Tang, 2022. "3D Positioning Method for Pineapple Eyes Based on Multiangle Image Stereo-Matching," Agriculture, MDPI, vol. 12(12), pages 1-17, November.
    4. Xingmei Xu & Lu Wang & Xuewen Liang & Lei Zhou & Youjia Chen & Puyu Feng & Helong Yu & Yuntao Ma, 2023. "Maize Seedling Leave Counting Based on Semi-Supervised Learning and UAV RGB Images," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    5. Anlan Ding & Baoliang Peng & Ke Yang & Yanhua Zhang & Xiaoxuan Yang & Xiuguo Zou & Zhangqing Zhu, 2022. "Design of a Machine Vision-Based Automatic Digging Depth Control System for Garlic Combine Harvester," Agriculture, MDPI, vol. 12(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1309-:d:897936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.