IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1246-d890719.html
   My bibliography  Save this article

Co-Flowering Species Richness Increases Pollinator Visitation to Apple Flowers

Author

Listed:
  • Amy-Marie Gilpin

    (Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia)

  • Conrad Kobel

    (Australian Health Services Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia)

  • Laura E. Brettell

    (Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
    Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK)

  • Corey O’Brien

    (Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia)

  • James M. Cook

    (Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia)

  • Sally A. Power

    (Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia)

Abstract

Co-flowering plants can experience an array of interactions, ranging from facilitation to competition, the direction and strength of which are often dependent on the relative abundance and diversity of the plant species involved and the foraging behavior of their pollinators. Understanding interactions between plant–pollinator networks and how they change over time is particularly important within agricultural systems, such as apples, that flower en masse and that also contain non-crop co-flowering species both within the farm and the surrounding landscape. We determined the degree of overlap between pollinator networks on two varieties of apple (Granny Smith and Pink Lady) and co-flowering plant species within orchards and the wider vegetation matrix in two apple-growing regions (Orange and Bilpin) in Australia. We surveyed plant–pollinator interactions at key stages of the cropping cycle: before mass flowering; during king, peak and late blooms; and, finally, once apple flowering had finished. Overall, we found considerable overlap in the flower visitor assemblage on apples and co-flowering species within the orchard. The introduced honeybee ( Apis mellifera ) was the most frequent flower visitor to all three vegetation types at all times in Orange. However, in Bilpin, both a native stingless bee ( Tetragonula carbonaria ) and A. mellifera were highly frequent visitors, both on- and off-crop. Numerous native bees, flies and Lepidoptera also commonly visited apple and co-flowering species within orchards in both locations. We found that native-bee and honeybee visitation to apple flowers was positively correlated with co-flowering species richness (within the orchard and the wider matrix); however, visitation by native bees decreased as the area of co-flowering species in the surrounding landscape increased. Our study highlights the importance of maintaining diverse co-flowering plant communities within the local landscape to increase and support a wide variety of pollinators in horticultural production systems.

Suggested Citation

  • Amy-Marie Gilpin & Conrad Kobel & Laura E. Brettell & Corey O’Brien & James M. Cook & Sally A. Power, 2022. "Co-Flowering Species Richness Increases Pollinator Visitation to Apple Flowers," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1246-:d:890719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    3. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    4. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    6. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    7. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    9. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    10. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    11. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    13. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    15. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Alexandra M. Cheney & Stephanann M. Costello & Nicholas V. Pinkham & Annie Waldum & Susan C. Broadaway & Maria Cotrina-Vidal & Marc Mergy & Brian Tripet & Douglas J. Kominsky & Heather M. Grifka-Walk , 2023. "Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    19. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    20. Myrto Pantazi & Olivier Klein & Mikhail Kissine, 2020. "Is justice blind or myopic? An examination of the effects of meta-cognitive myopia and truth bias on mock jurors and judges," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(2), pages 214-229, March.
    21. Peter Sarkies & Jennifer Westoby & Rebecca Mary Kilner & Rahia Mashoodh, 2024. "Gene body methylation evolves during the sustained loss of parental care in the burying beetle," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1246-:d:890719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.