IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i6p866-d839739.html
   My bibliography  Save this article

A Conceptual Model for Development of Small Farm Management Information System: A Case of Indonesian Smallholder Chili Farmers

Author

Listed:
  • Henriyadi Henriyadi

    (ICT Department, School of Engineering and Technology, Asian Institute of Technology, Khlong Luang District, Pathum Thani 12120, Thailand)

  • Vatcharaporn Esichaikul

    (ICT Department, School of Engineering and Technology, Asian Institute of Technology, Khlong Luang District, Pathum Thani 12120, Thailand)

  • Chutiporn Anutariya

    (ICT Department, School of Engineering and Technology, Asian Institute of Technology, Khlong Luang District, Pathum Thani 12120, Thailand)

Abstract

Farm Management Information Systems (FMIS) assists farmers in managing their farms more effectively and efficiently. However, the use of FMIS to support crop cultivation is, at the present time, relatively expensive for smallholder farmers. Due to some handicaps, providing an FMIS that is suitable for small-holder farmers is a challenge. To analyze this gap, this study followed 3 steps, namely: (1) identified commodity and research area, (2) performed Farmers’ Information Needs Assessment (FINA), and (3) developed the conceptual model using the Soft System Methodology. Indonesian smallholder chili farmers are used as a case study. The most required information of smallholder’ farmers was identified through a qualitative questionnaire. Despite this, not all identified information needs could be accurately mapped. Thus, this indicates the need for a new FMIS conceptual model that is suitable for smallholder farmers. This study proposes an FMIS conceptual model for farm efficiency that incorporates five layers, namely farmers’ information needs, data quality assessment, data extraction, SMM (split, match and merge), and presentation layer. SMM layer also provides a method to comprehensively tackle three main problems in data interoperability problems, namely schema heterogeneity, schema granularity, and mismatch entity naming.

Suggested Citation

  • Henriyadi Henriyadi & Vatcharaporn Esichaikul & Chutiporn Anutariya, 2022. "A Conceptual Model for Development of Small Farm Management Information System: A Case of Indonesian Smallholder Chili Farmers," Agriculture, MDPI, vol. 12(6), pages 1-23, June.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:866-:d:839739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/6/866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/6/866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babu, Suresh Chandra & Glendenning, Claire J. & Okyere, Kwadwo Asenso & Govindarajan, Senthil Kumar, 2012. "Farmers' information needs and search behaviors: Case study in Tamil Nadu, India," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126226, International Association of Agricultural Economists.
    2. Wickham, Hadley, 2011. "The Split-Apply-Combine Strategy for Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i01).
    3. Graeub, Benjamin E. & Chappell, M. Jahi & Wittman, Hannah & Ledermann, Samuel & Kerr, Rachel Bezner & Gemmill-Herren, Barbara, 2016. "The State of Family Farms in the World," World Development, Elsevier, vol. 87(C), pages 1-15.
    4. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    5. Babu, Suresh Chandra & Glendenning, Claire J. & Asenso-Okyere, Kwadwo & Govindarajan, Senthil Kumar, 2012. "Farmers’ information needs and search behaviors: Case study in Tamil Nadu, India," IFPRI discussion papers 1165, International Food Policy Research Institute (IFPRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitre D. Dimitrov, 2023. "Internet and Computers for Agriculture," Agriculture, MDPI, vol. 13(1), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babu, Suresh Chandra & Joshi, P.K. & Glendenning, Claire J. & Kwadwo, Asenso-Okyere & Rasheed, Sulaiman V., 2013. "The State of Agricultural Extension Reforms in India: Strategic Priorities and Policy Options," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(2).
    2. Lin Xie & Biliang Luo & Wenjing Zhong, 2021. "How Are Smallholder Farmers Involved in Digital Agriculture in Developing Countries: A Case Study from China," Land, MDPI, vol. 10(3), pages 1-16, March.
    3. Oliver Falck & Johannes Koenen, 2020. "Rohstoff „Daten“: Volkswirtschaflicher Nutzen von Datenbereitstellung – eine Bestandsaufnahme," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 113.
    4. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    5. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    6. Luis Bauluz & Yajna Govind & Filip Novokmet, 2020. "Global Land Inequality," PSE Working Papers halshs-03022318, HAL.
    7. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Dolejš Martin & Forejt Michal, 2019. "Franziscean Cadastre in Landscape Structure Research: A Systematic Review," Quaestiones Geographicae, Sciendo, vol. 38(1), pages 131-144, March.
    9. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    10. Tianyu Qin & Lijun Wang & Yanxin Zhou & Liyue Guo & Gaoming Jiang & Lei Zhang, 2022. "Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    11. Torres Franco, Nicolás Arturo & Dávalos, Eleonora & Morales, Leonardo Fabio, 2021. "Heterogeneous Effects of Agricultural Technical Assistance in Colombia," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 53(4), pages 459-481, November.
    12. Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    13. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitization of the Agricultural Sector: The Impact of ICT on the Development of Enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), January.
    14. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    15. Ayanda Nyambali & Mthunzi Mndela & Tlou Julius Tjelele & Cletos Mapiye & Phillip Evert Strydom & Emiliano Raffrenato & Kennedy Dzama & Voster Muchenje & Ntuthuko Raphael Mkhize, 2022. "Growth Performance, Carcass Characteristics and Economic Viability of Nguni Cattle Fed Diets Containing Graded Levels of Opuntia ficus-indica," Agriculture, MDPI, vol. 12(7), pages 1-13, July.
    16. Anne Jerneck, 2018. "What about Gender in Climate Change? Twelve Feminist Lessons from Development," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    17. Viviany Moura Chaves & Cecília Rocha & Sávio Marcelino Gomes & Michelle Cristine Medeiros Jacob & João Bosco Araújo da Costa, 2023. "Integrating Family Farming into School Feeding: A Systematic Review of Challenges and Potential Solutions," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Herrera, Gabriel Paes & Lourival, Reinaldo & da Costa, Reginaldo Brito & Mendes, Dany Rafael Fonseca & Moreira, Tito Belchior Silva & de Abreu, Urbano Gomes Pinto & Constantino, Michel, 2018. "Econometric analysis of income, productivity and diversification among smallholders in Brazil," Land Use Policy, Elsevier, vol. 76(C), pages 455-459.
    19. Li, Lei & Lin, Jiabao & Ouyang, Ye & Luo, Xin (Robert), 2022. "Evaluating the impact of big data analytics usage on the decision-making quality of organizations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    20. Panos Constantinides & Ola Henfridsson & Geoffrey G. Parker, 2018. "Introduction—Platforms and Infrastructures in the Digital Age," Information Systems Research, INFORMS, vol. 29(2), pages 381-400, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:866-:d:839739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.