IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p733-d821447.html
   My bibliography  Save this article

Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province

Author

Listed:
  • Tlou E. Mogale

    (Risk and Vulnerability Science Centre (RSVC), University of Limpopo, Polokwane 0727, South Africa
    Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Polokwane 0727, South Africa)

  • Kingsley K. Ayisi

    (Risk and Vulnerability Science Centre (RSVC), University of Limpopo, Polokwane 0727, South Africa
    Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Polokwane 0727, South Africa)

  • Lawrence Munjonji

    (Risk and Vulnerability Science Centre (RSVC), University of Limpopo, Polokwane 0727, South Africa
    Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Polokwane 0727, South Africa)

  • Yehenew G. Kifle

    (Department of Math and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, USA)

Abstract

Climate change is severely disrupting ecosystem services and crop productivity, resulting in lower crop growth and yields. Studies have emphasized the importance of assessing conservation practices through crop modelling to improve cropland productivity. There is a lack of accurate information in the performance of conservation practices as well as data for improved crop modelling. No-tillage sorghum–cowpea intercrop experiments were established to assess the productivity of four sorghum cultivars and cowpea at two densities of 37,037 and 74,074 per plants and generate data for improved crop modelling. The leaf area index (LAI) varied in sorghum cultivars and cowpea densities during the two growing seasons. Cultivars Enforcer and NS5511 produced the highest grain yields of 4338 kg per ha and 2120 kg per ha, respectively, at Syferkuil. Ofcolaco’s Enforcer and Avenger were the highest yielding cultivars at Ofcolaco, with mean yields of 2625 kg per ha and 1191 kg per ha, respectively. At Syferkuil, cowpea yield was 93% and 77% more in sole compared to binary cultures during the growing seasons at Syferkuil. At Ofcolaco, sole yielded approximately 96% more grain than binary. The findings confirm that for the sorghum–cowpea intercrop to improve overall system productivity, cowpea density should be increased.

Suggested Citation

  • Tlou E. Mogale & Kingsley K. Ayisi & Lawrence Munjonji & Yehenew G. Kifle, 2022. "Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:733-:d:821447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chimonyo, V.G.P. & Modi, A.T. & Mabhaudhi, T., 2016. "Simulating yield and water use of a sorghum–cowpea intercrop using APSIM," Agricultural Water Management, Elsevier, vol. 177(C), pages 317-328.
    2. Ulrike Rippke & Julian Ramirez-Villegas & Andy Jarvis & Sonja J. Vermeulen & Louis Parker & Flora Mer & Bernd Diekkrüger & Andrew J. Challinor & Mark Howden, 2016. "Timescales of transformational climate change adaptation in sub-Saharan African agriculture," Nature Climate Change, Nature, vol. 6(6), pages 605-609, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth Tlou Mogale & Kwabena Kingsley Ayisi & Lawrence Munjonji & Yehenew Getachew Kifle, 2023. "Biological Nitrogen Fixation of Cowpea in a No-Till Intercrop under Contrasting Rainfed Agro-Ecological Environments," Sustainability, MDPI, vol. 15(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Lalou & Benjamin Sultan & Bertrand Muller & Alphousseyni Ndonky, 2019. "Does climate opportunity facilitate smallholder farmers’ adaptive capacity in the Sahel?," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    2. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    3. Vimbayi Grace Petrova Chimonyo & Tendai Polite Chibarabada & Dennis Junior Choruma & Richard Kunz & Sue Walker & Festo Massawe & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2022. "Modelling Neglected and Underutilised Crops: A Systematic Review of Progress, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    4. Jin, Ning & Tao, Bo & Ren, Wei & He, Liang & Zhang, Dongyan & Wang, Dacheng & Yu, Qiang, 2022. "Assimilating remote sensing data into a crop model improves winter wheat yield estimation based on regional irrigation data," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Zagaria, Cecilia & Schulp, Catharina J.E. & Malek, Žiga & Verburg, Peter H., 2023. "Potential for land and water management adaptations in Mediterranean croplands under climate change," Agricultural Systems, Elsevier, vol. 205(C).
    6. Cliff Zinyemba & Emma Archer & Hanna-Andrea Rother, 2020. "Climate Change, Pesticides and Health: Considering the Risks and Opportunities of Adaptation for Zimbabwean Smallholder Cotton Growers," IJERPH, MDPI, vol. 18(1), pages 1-11, December.
    7. Mabhaudhi, T. & Mpandeli, S. & Nhamo, Luxon & Chimonyo, V. G. P. & Nhemachena, Charles & Senzanje, A. & Naidoo, D. & Modi, A. T., 2018. "Prospects for improving irrigated agriculture in Southern Africa: linking water, energy and food," Papers published in Journals (Open Access), International Water Management Institute, pages 10(12):1-16.
    8. Jacques Fils Pierre & Upendra Singh & Esaú Ruiz-Sánchez & Willingthon Pavan, 2023. "Development of a Cereal–Legume Intercrop Model for DSSAT Version 4.8," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    9. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    10. Vasilii Erokhin & Alexander Esaulko & Elena Pismennaya & Evgeny Golosnoy & Olga Vlasova & Anna Ivolga, 2021. "Combined Impact of Climate Change and Land Qualities on Winter Wheat Yield in Central Fore-Caucasus: The Long-Term Retrospective Study," Land, MDPI, vol. 10(12), pages 1-28, December.
    11. Charles Onyutha, 2018. "African crop production trends are insufficient to guarantee food security in the sub-Saharan region by 2050 owing to persistent poverty," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1203-1219, October.
    12. Ben Parkes & Benjamin Sultan & Philippe Ciais, 2018. "The impact of future climate change and potential adaptation methods on Maize yields in West Africa," Climatic Change, Springer, vol. 151(2), pages 205-217, November.
    13. Andrieu, N. & Sogoba, B. & Zougmore, R. & Howland, F. & Samake, O. & Bonilla-Findji, O. & Lizarazo, M. & Nowak, A. & Dembele, C. & Corner-Dolloff, C., 2017. "Prioritizing investments for climate-smart agriculture: Lessons learned from Mali," Agricultural Systems, Elsevier, vol. 154(C), pages 13-24.
    14. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 653-675, October.
    15. Amit Tubi & Joe Williams, 2021. "Beyond binary outcomes in climate adaptation: The illustrative case of desalination," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    16. Meine van Noordwijk & Richard Coe & Fergus L. Sinclair & Eike Luedeling & Jules Bayala & Catherine W. Muthuri & Peter Cooper & Roeland Kindt & Lalisa Duguma & Christine Lamanna & Peter A. Minang, 2021. "Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(5), pages 1-33, June.
    17. Manners, Rhys & Vandamme, Elke & Adewopo, Julius & Thornton, Philip & Friedmann, Michael & Carpentier, Sebastien & Ezui, Kodjovi Senam & Thiele, Graham, 2021. "Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates," Agricultural Systems, Elsevier, vol. 193(C).
    18. Louise Beveridge & Stephen Whitfield & Andy Challinor, 2018. "Crop modelling: towards locally relevant and climate-informed adaptation," Climatic Change, Springer, vol. 147(3), pages 475-489, April.
    19. Hui Ju & Qin Liu & Yingchun Li & Xiaoxu Long & Zhongwei Liu & Erda Lin, 2020. "Multi-Stakeholder Efforts to Adapt to Climate Change in China’s Agricultural Sector," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    20. Shupler, Matthew & Mwitari, James & Gohole, Arthur & Anderson de Cuevas, Rachel & Puzzolo, Elisa & Čukić, Iva & Nix, Emily & Pope, Daniel, 2021. "COVID-19 impacts on household energy & food security in a Kenyan informal settlement: The need for integrated approaches to the SDGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:733-:d:821447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.