IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p547-d791738.html
   My bibliography  Save this article

An Operational Downscaling Method of Solar-Induced Chlorophyll Fluorescence (SIF) for Regional Drought Monitoring

Author

Listed:
  • Zhiming Hong

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Yijie Hu

    (National Disaster Reduction Center of China, Beijing 100124, China)

  • Changlu Cui

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Xining Yang

    (Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI 48197, USA)

  • Chongxin Tao

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
    School of Management, Xinjiang Agricultural University, Urumqi 830052, China)

  • Weiran Luo

    (School of Water Conservancy Sciences and Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Wen Zhang

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Linyi Li

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Lingkui Meng

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

Abstract

Solar-induced chlorophyll fluorescence (SIF) has been shown to be a powerful proxy for photosynthesis and a promising indicator of drought monitoring, but the ability of high-resolution satellite-derived SIF for drought monitoring has not been widely investigated due to a lack of data. The lack of high spatiotemporal resolution satellite SIF hinders the resolution enhancement of SIF derived by downscaling or reconstruction algorithms. The TROPOspheric Monitoring Instrument (TROPOMI) SIF provides an alternative with finer spatiotemporal resolution. We present an operational downscaling method to generate 500 m 16-day SIF (TSIF) using Neural Networks over a local spatiotemporal window. The results showed that our method is very robust against overfitting, and TSIF has a strong spatiotemporal consistency with TROPOMI SIF (TROPOSIF) with R 2 = 0.956 and RMSE = 0.054 mWm − 2 sr − 1 nm − 1 . Comparison with another SIF product (CASIF) showed a spatiotemporal consistency with TSIF. Comparison with tower gross primary productivity (GPP) from AmeriFlux in California showed a strong correlation with R 2 for multiple ecosystems ranging from 0.58 to 0.88. We explored the capacity of TSIF for monitoring a drought event in Henan, China, showing that TSIF is more sensitive to drought and precipitation compared to the Enhanced Vegetation Index. Our TSIF is a very promising indicator for regional drought monitoring.

Suggested Citation

  • Zhiming Hong & Yijie Hu & Changlu Cui & Xining Yang & Chongxin Tao & Weiran Luo & Wen Zhang & Linyi Li & Lingkui Meng, 2022. "An Operational Downscaling Method of Solar-Induced Chlorophyll Fluorescence (SIF) for Regional Drought Monitoring," Agriculture, MDPI, vol. 12(4), pages 1-21, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:547-:d:791738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prashant Srivastava & Dawei Han & Miguel Ramirez & Tanvir Islam, 2013. "Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3127-3144, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlong Jing & Pengyan Zhang & Xiaodan Zhao, 2018. "Reconstructing Monthly ECV Global Soil Moisture with an Improved Spatial Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2523-2537, May.
    2. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    3. Sun, Hao & Gao, Jinhua, 2023. "A pixel-wise calculation of soil evaporative efficiency with thermal/optical remote sensing and meteorological reanalysis data for downscaling microwave soil moisture," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Sanaz Negahbani & Mehdi Momeni & Mina Moradizadeh, 2022. "Improving the Spatiotemporal Resolution of Soil Moisture through a Synergistic Combination of MODIS and LANDSAT8 Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1813-1832, April.
    5. Prashant K. Srivastava & Dawei Han & Aradhana Yaduvanshi & George P. Petropoulos & Sudhir Kumar Singh & Rajesh Kumar Mall & Rajendra Prasad, 2017. "Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation," Sustainability, MDPI, vol. 9(11), pages 1-17, October.
    6. Xumin Zhang & Simin Qu & Jijie Shen & Yingbing Chen & Xiaoqiang Yang & Peng Jiang & Peng Shi, 2023. "Effect of Distinct Evaluation Objectives on Different Precipitation Downscaling Methods and the Corresponding Potential Impacts on Catchment Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1913-1930, March.
    7. Prashant K. Srivastava & Prem C. Pandey & George P. Petropoulos & Nektarios N. Kourgialas & Varsha Pandey & Ujjwal Singh, 2019. "GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques," Resources, MDPI, vol. 8(2), pages 1-17, April.
    8. Dileep Kumar Gupta & Prashant K. Srivastava & Ankita Singh & George P. Petropoulos & Nikolaos Stathopoulos & Rajendra Prasad, 2021. "SMAP Soil Moisture Product Assessment over Wales, U.K., Using Observations from the WSMN Ground Monitoring Network," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    9. Zhihui Yang & Jun Zhao & Jialiang Liu & Yuanyuan Wen & Yanqiang Wang, 2021. "Soil Moisture Retrieval Using Microwave Remote Sensing Data and a Deep Belief Network in the Naqu Region of the Tibetan Plateau," Sustainability, MDPI, vol. 13(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:547-:d:791738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.