IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p181-d735454.html
   My bibliography  Save this article

Sequential Action of Different Fiber-Degrading Enzymes Enhances the Degradation of Corn Stover

Author

Listed:
  • Shengguo Zhao

    (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Mohamed Diaby

    (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Nan Zheng

    (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Jiaqi Wang

    (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Abstract

Corn stover is one of the most agricultural residue abundances over the world; however, it is extremely prevented from microbial and enzymatic degradation into monomers because of the complex chemical and physical structure. In order to degrade corn stover, a large variety of enzymes with different specificities are required. However, each enzyme has its own reaction condition such as optimal pH and temperature to express its maximum activity. We hypothesize that the best sequence of an enzyme reaction could influence the degradation of corn stover. Therefore, the objective of this study was to investigate the effect of enzyme sequence action on the degradation of corn stover. A complete randomized design was used for this study. Four enzymes were used, cellulase (Cel) (pH 4.8 at 50 °C), hemicellulase (Hem) (pH 5 at 50 °C), pectinase (Pec) (pH 4 at 50 °C) and laccase (Lac) (pH 3 at 30 °C). This was subsequently submitted to enzyme sequence digestion following four steps (6 h incubation for each step) during which a single enzyme in each step was evaluated. The substrate (raw corn stover) was placed in sodium acetate buffer with an enzyme. The supernatant was then collected in each step for further chemical analysis. The results showed that there was a significant difference at p < 0.05 between treatments, suggesting that sequential action of fiber-degrading enzymes affected the chemical composition of corn stover. The best enzyme sequence (in terms of the total reducing sugar in different steps) was Hem-Cel-Pec-Lac (2.2 mg/mL) at p < 0.05; however, the worst enzyme sequence was Lac-Pec-Hem-Cel (0.8 mg/mL) at p < 0.05. Almost all the first steps in the process showed an increasing level of reducing sugar except the step which started with Lac where a lower reducing sugar level was observed. Similarly, xylose showed a higher level in all the processes in the first steps regardless of the enzyme type. It was observed that glucose production was totally dependent on the position of Cel in the enzyme sequence. Therefore, enzyme sequence action may be a useful method for corn stover to improve its degradation as feed stock.

Suggested Citation

  • Shengguo Zhao & Mohamed Diaby & Nan Zheng & Jiaqi Wang, 2022. "Sequential Action of Different Fiber-Degrading Enzymes Enhances the Degradation of Corn Stover," Agriculture, MDPI, vol. 12(2), pages 1-10, January.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:181-:d:735454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Subodh & Paritosh, Kunwar & Pareek, Nidhi & Chawade, Aakash & Vivekanand, Vivekanand, 2018. "De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 160-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasmine Ryma Ouahabi & Kenza Bensadok & Abdeldjalil Ouahabi, 2021. "Optimization of the Biomethane Production Process by Anaerobic Digestion of Wheat Straw Using Chemical Pretreatments Coupled with Ultrasonic Disintegration," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    2. Prajapati, Kishan Kumar & Yadav, Monika & Singh, Rao Martand & Parikh, Priti & Pareek, Nidhi & Vivekanand, Vivekanand, 2021. "An overview of municipal solid waste management in Jaipur city, India - Current status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Monika Yadav & Kunwar Paritosh & Aakash Chawade & Nidhi Pareek & Vivekanand Vivekanand, 2018. "Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility," Agriculture, MDPI, vol. 8(6), pages 1-15, June.
    6. Gao, Zhenghui & Alshehri, Khaled & Li, Yuan & Qian, Hang & Sapsford, Devin & Cleall, Peter & Harbottle, Michael, 2022. "Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Kumar, Subodh & Gandhi, Paras & Yadav, Monika & Paritosh, Kunwar & Pareek, Nidhi & Vivekanand, Vivekanand, 2019. "Weak alkaline treatment of wheat and pearl millet straw for enhanced biogas production and its economic analysis," Renewable Energy, Elsevier, vol. 139(C), pages 753-764.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:181-:d:735454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.