IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p1993-d982517.html
   My bibliography  Save this article

Coupling Sewage Sludge Amendment with Cyanobacterial Inoculation to Enhance Stability and Carbon Gain in Dryland Degraded Soils

Author

Listed:
  • Lisa Maggioli

    (Agronomy Department, University of Almería, 04120 Almería, Spain)

  • Sonia Chamizo

    (Agronomy Department, University of Almería, 04120 Almería, Spain
    Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), 04120 Almería, Spain)

  • Raúl Román

    (Agronomy Department, University of Almería, 04120 Almería, Spain
    Department of Ecosystem Science and Management, The Pennsylvania State University, State College, PA 16802, USA)

  • Carlos Asensio-Grima

    (Agronomy Department, University of Almería, 04120 Almería, Spain)

  • Yolanda Cantón

    (Agronomy Department, University of Almería, 04120 Almería, Spain
    Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), 04120 Almería, Spain)

Abstract

Sewage sludge (SS) is widely used as a soil conditioner in agricultural soil due to its high content of organic matter and nutrients. In addition, inoculants based on soil microorganisms, such as cyanobacteria, are being applied successfully in soil restoration to improve soil stability and fertility in agriculture. However, the combination of SS and cyanobacteria inoculation is an unexplored application that may be highly beneficial to soil. In this outdoor experiment, we studied the ability of cyanobacteria inoculum to grow on degraded soil amended with different concentrations of composted SS, and examined the effects of both SS concentration and cyanobacteria application on carbon gain and soil stability. We also explored the feasibility of using cyanobacteria for immobilizing salts in SS-amended soil. Our results showed that cyanobacteria growth increased in the soil amended with the lowest SS concentration tested (5 t ha −1 , on soil 2 cm deep), as shown by its higher chlorophyll a content and associated deeper spectral absorption peak at 680 nm. At higher SS concentrations, inoculum growth decreased, which was attributed to competition of the inoculated cyanobacteria with the native SS bacterial community. However, SS significantly enhanced soil organic carbon gain and tightly-bound exopolysaccharide content. Cyanobacteria inoculation significantly improved soil stability and reduced soil’s wind erodibility. Moreover, it led to a decrease in the lixiviate electrical conductivity of salt-contaminated soils, indicating its potential for salt immobilization and soil bioremediation. Therefore, cyanobacteria inoculation, along with adequately dosed SS surface application, is an efficient strategy for improving carbon gain and surface stability in dryland agricultural soil.

Suggested Citation

  • Lisa Maggioli & Sonia Chamizo & Raúl Román & Carlos Asensio-Grima & Yolanda Cantón, 2022. "Coupling Sewage Sludge Amendment with Cyanobacterial Inoculation to Enhance Stability and Carbon Gain in Dryland Degraded Soils," Agriculture, MDPI, vol. 12(12), pages 1-19, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:1993-:d:982517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/1993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/1993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuno Nunes & Carla Ragonezi & Carla S.S. Gouveia & Miguel Â.A. Pinheiro de Carvalho, 2021. "Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    2. Robinson, Lance W. & Ericksen, Polly J. & Chesterman, Sabrina & Worden, Jeffrey S., 2015. "Sustainable intensification in drylands: What resilience and vulnerability can tell us," Agricultural Systems, Elsevier, vol. 135(C), pages 133-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Penélope Mostazo & Carlos Asensio-Amador & Carlos Asensio, 2023. "Soil Erosion Modeling and Monitoring," Agriculture, MDPI, vol. 13(2), pages 1-4, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashfaq, Asma & Khan, Zafar Iqbal & Ahmad, Kafeel & Ashraf, Muhammad Arslan & Hussain, Muhammad Iftikhar & Elghareeb, Eman M., 2022. "Hazard of selenium metal contamination in vegetables grown in municipal solid waste amended soil: Assessment of the potential sources and systemic health effects," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Bosire, Caroline K. & Krol, Maarten S. & Mekonnen, Mesfin M. & Ogutu, Joseph O. & de Leeuw, Jan & Lannerstad, Mats & Hoekstra, Arjen Y., 2016. "Meat and milk production scenarios and the associated land footprint in Kenya," Agricultural Systems, Elsevier, vol. 145(C), pages 64-75.
    3. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    4. Monica Laura Zlati & Lucian Puiu Georgescu & Catalina Iticescu & Romeo Victor Ionescu & Valentin Marian Antohi, 2022. "New Approach to Modelling the Impact of Heavy Metals on the European Union’s Water Resources," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    5. Nidhal Marzougui & Nadia Ounalli & Sonia Sabbahi & Tarek Fezzani & Farah Abidi & Sihem Jebari & Sourour Melki & Ronny Berndtsson & Walid Oueslati, 2022. "How Can Sewage Sludge Use in Sustainable Tunisian Agriculture Be Increased?," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    6. Min Pan & Shing Him Lee & Liwen Luo & Xun Wen Chen & Yik Tung Sham, 2023. "Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residue and Biochar Attenuated Accumulation and Translocation of Antibiotics in Soils and Crops," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    7. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    8. Radheshyam Yadav & Wusirika Ramakrishna, 2023. "Biochar as an Environment-Friendly Alternative for Multiple Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    9. Cao, Jianjun & Li, Mengtian & Deo, Ravinesh C. & Adamowski, Jan F. & Cerdà, Artemi & Feng, Qi & Liu, Minxia & Zhang, Jian & Zhu, Guofeng & Zhang, Xuebin & Xu, Xueyun & Yang, Shurong & Gong, Yifan, 2018. "Comparison of social-ecological resilience between two grassland management patterns driven by grassland land contract policy in the Maqu, Qinghai-Tibetan Plateau," Land Use Policy, Elsevier, vol. 74(C), pages 88-96.
    10. Fabrice Dossa & Yann Miassi & Kémal Banzou, 2018. "Onion (Allium Cepa) Production in Urban and Peri-Urban Areas: Financial Performance and Importance of This Activity for Market Gardeners in Southern Benin," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 3(2), pages 334-346, June.
    11. Ochoa. M, W. Santiago & Härtl, Fabian H. & Paul, Carola & Knoke, Thomas, 2019. "Cropping systems are homogenized by off-farm income – Empirical evidence from small-scale farming systems in dry forests of southern Ecuador," Land Use Policy, Elsevier, vol. 82(C), pages 204-219.
    12. Bouba Traore & Birhanu Zemadim Birhanu & Seydou Sangaré & Murali Krishna Gumma & Ramadjita Tabo & Anthony Michael Whitbread, 2021. "Contribution of Climate-Smart Agriculture Technologies to Food Self-Sufficiency of Smallholder Households in Mali," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    13. Emirjona Kertolli & Paolo Prosperi & Rachid Harbouze & Rachid Moussadek & Ghizlane Echchgadda & Hatem Belhouchette, 2024. "The water–energy–food–ecosystem nexus in North Africa dryland farming: a multi-criteria analysis of climate-resilient innovations in Morocco," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 12(1), pages 1-31, December.
    14. Schut, Marc & van Asten, Piet & Okafor, Chris & Hicintuka, Cyrille & Mapatano, Sylvain & Nabahungu, Nsharwasi Léon & Kagabo, Desire & Muchunguzi, Perez & Njukwe, Emmanuel & Dontsop-Nguezet, Paul M. & , 2016. "Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation," Agricultural Systems, Elsevier, vol. 145(C), pages 165-176.
    15. Vine Mutyasira & Dana Hoag & Dustin L. Pendell & Dale T. Manning, 2018. "Is Sustainable Intensification Possible? Evidence from Ethiopia," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    16. Mutyasira, Vine & Hoag, Dana & Pendell, Dustin & Manning, Dale T. & Berhe, Melaku, 2018. "Assessing the relative sustainability of smallholder farming systems in Ethiopian highlands," Agricultural Systems, Elsevier, vol. 167(C), pages 83-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:1993-:d:982517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.