IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1721-d946847.html
   My bibliography  Save this article

Codling Moth Monitoring with Camera-Equipped Automated Traps: A Review

Author

Listed:
  • Jozsef Suto

    (Department of IT Systems and Networks, Faculty of Informatics, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

The codling moth ( Cydia pomonella ) is probably the most harmful pest in apple and pear orchards. The crop loss due to the high harmfulness of the insect can be extremely expensive; therefore, sophisticated pest management is necessary to protect the crop. The conventional monitoring approach for insect swarming has been based on traps that are periodically checked by human operators. However, this workflow can be automatized. To achieve this goal, a dedicated image capture device and an accurate insect counter algorithm are necessary which make online insect swarm prediction possible. From the hardware side, more camera-equipped embedded systems have been designed to remotely capture and upload pest trap images. From the software side, with the aid of machine vision and machine learning methods, traditional (manual) identification and counting can be solved by algorithm. With the appropriate combination of the hardware and software components, spraying can be accurately scheduled, and the crop-defending cost will be significantly reduced. Although automatic traps have been developed for more pest species and there are a large number of papers which investigate insect detection, a limited number of articles focus on the C. pomonella . The aim of this paper is to review the state of the art of C. pomonella monitoring with camera-equipped traps. The paper presents the advantages and disadvantages of automated traps’ hardware and software components and examines their practical applicability.

Suggested Citation

  • Jozsef Suto, 2022. "Codling Moth Monitoring with Camera-Equipped Automated Traps: A Review," Agriculture, MDPI, vol. 12(10), pages 1-18, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1721-:d:946847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minxi Rong & Zhizheng Wang & Bin Ban & Xiaoli Guo & Fahad Al Basir, 2022. "Pest Identification and Counting of Yellow Plate in Field Based on Improved Mask R-CNN," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-9, March.
    2. Suk-Ju Hong & Sang-Yeon Kim & Eungchan Kim & Chang-Hyup Lee & Jung-Sup Lee & Dong-Soo Lee & Jiwoong Bang & Ghiseok Kim, 2020. "Moth Detection from Pheromone Trap Images Using Deep Learning Object Detectors," Agriculture, MDPI, vol. 10(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jozsef Suto, 2023. "Hardware and Software Support for Insect Pest Management," Agriculture, MDPI, vol. 13(9), pages 1-2, September.
    2. Meixiang Chen & Liping Chen & Tongchuan Yi & Ruirui Zhang & Lang Xia & Cheng Qu & Gang Xu & Weijia Wang & Chenchen Ding & Qing Tang & Mingqi Wu, 2023. "Development of a Low-Power Automatic Monitoring System for Spodoptera frugiperda (J. E. Smith)," Agriculture, MDPI, vol. 13(4), pages 1-19, April.
    3. Dana Čirjak & Ivan Aleksi & Darija Lemic & Ivana Pajač Živković, 2023. "EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling Moth Population for Early Damage Detection in Apple Orchard," Agriculture, MDPI, vol. 13(5), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wang & Jiang Liu & Lijia Xu & Peng Huang & Xiong Luo & Yan Hu & Zhiliang Kang, 2021. "Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
    2. Renjie Huang & Tingshan Yao & Cheng Zhan & Geng Zhang & Yongqiang Zheng, 2021. "A Motor-Driven and Computer Vision-Based Intelligent E-Trap for Monitoring Citrus Flies," Agriculture, MDPI, vol. 11(5), pages 1-27, May.
    3. Saim Khalid & Hadi Mohsen Oqaibi & Muhammad Aqib & Yaser Hafeez, 2023. "Small Pests Detection in Field Crops Using Deep Learning Object Detection," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    4. Jozsef Suto, 2022. "A Novel Plug-in Board for Remote Insect Monitoring," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    5. Dana Čirjak & Ivan Aleksi & Darija Lemic & Ivana Pajač Živković, 2023. "EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling Moth Population for Early Damage Detection in Apple Orchard," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    6. Mohammed Aljebreen & Hanan Abdullah Mengash & Fadoua Kouki & Abdelwahed Motwakel, 2023. "Improved Artificial Ecosystem Optimizer with Deep-Learning-Based Insect Detection and Classification for Agricultural Sector," Sustainability, MDPI, vol. 15(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1721-:d:946847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.