IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i5p460-d557396.html
   My bibliography  Save this article

A Motor-Driven and Computer Vision-Based Intelligent E-Trap for Monitoring Citrus Flies

Author

Listed:
  • Renjie Huang

    (School of Computer and Information Science, Southwest University, Chongqing 400715, China)

  • Tingshan Yao

    (National Engineering Research Center for Citrus Technology, Citrus Research Institute, Southwest University, Chongqing 400712, China)

  • Cheng Zhan

    (School of Computer and Information Science, Southwest University, Chongqing 400715, China)

  • Geng Zhang

    (School of Computer and Information Science, Southwest University, Chongqing 400715, China)

  • Yongqiang Zheng

    (National Engineering Research Center for Citrus Technology, Citrus Research Institute, Southwest University, Chongqing 400712, China)

Abstract

Citrus flies are important quarantine pests in citrus plantations. Electronic traps (e-traps) based on computer vision are the most popular types of equipment for monitoring them. However, most current e-traps are inefficient and unreliable due to requiring manual operations and lack of reliable detection and identification algorithms of citrus fly images. To address these problems, this paper presents a monitoring scheme based on automatic e-traps and novel recognition algorithms. In this scheme, the prototype of an automatic motor-driven e-trap is firstly designed based on a yellow sticky trap. A motor autocontrol algorithm based on Local Binary Pattern (LBP) image analysis is proposed to automatically replace attractants in the e-trap for long-acting work. Furthermore, for efficient and reliable statistics of captured citrus flies, based on the differences between two successive sampling images of the e-trap, a simple and effective detection algorithm is presented to continuously detect the newly captured citrus flies from the collected images of the e-trap. Moreover, a Multi-Attention and Multi-Part convolutional neural Network (MAMPNet) is proposed to exploit discriminative local features of citrus fly images to recognize the citrus flies in the images. Finally, extensive simulation experiments validate the feasibility and efficiency of the designed e-trap prototype and its autocontrol algorithm, as well as the reliability and effectiveness of the proposed detection and recognition algorithms for citrus flies.

Suggested Citation

  • Renjie Huang & Tingshan Yao & Cheng Zhan & Geng Zhang & Yongqiang Zheng, 2021. "A Motor-Driven and Computer Vision-Based Intelligent E-Trap for Monitoring Citrus Flies," Agriculture, MDPI, vol. 11(5), pages 1-27, May.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:460-:d:557396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/5/460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/5/460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suk-Ju Hong & Sang-Yeon Kim & Eungchan Kim & Chang-Hyup Lee & Jung-Sup Lee & Dong-Soo Lee & Jiwoong Bang & Ghiseok Kim, 2020. "Moth Detection from Pheromone Trap Images Using Deep Learning Object Detectors," Agriculture, MDPI, vol. 10(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Gao & Jiaxing Xie & Mingxin Yang & Ping Zhou & Wenbin Chen & Gaotian Liang & Yufeng Chen & Xiongzhe Han & Weixing Wang, 2021. "Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM," Agriculture, MDPI, vol. 11(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wang & Jiang Liu & Lijia Xu & Peng Huang & Xiong Luo & Yan Hu & Zhiliang Kang, 2021. "Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
    2. Saim Khalid & Hadi Mohsen Oqaibi & Muhammad Aqib & Yaser Hafeez, 2023. "Small Pests Detection in Field Crops Using Deep Learning Object Detection," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    3. Jozsef Suto, 2022. "Codling Moth Monitoring with Camera-Equipped Automated Traps: A Review," Agriculture, MDPI, vol. 12(10), pages 1-18, October.
    4. Jozsef Suto, 2022. "A Novel Plug-in Board for Remote Insect Monitoring," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    5. Dana Čirjak & Ivan Aleksi & Darija Lemic & Ivana Pajač Živković, 2023. "EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling Moth Population for Early Damage Detection in Apple Orchard," Agriculture, MDPI, vol. 13(5), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:460-:d:557396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.