A Motor-Driven and Computer Vision-Based Intelligent E-Trap for Monitoring Citrus Flies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Suk-Ju Hong & Sang-Yeon Kim & Eungchan Kim & Chang-Hyup Lee & Jung-Sup Lee & Dong-Soo Lee & Jiwoong Bang & Ghiseok Kim, 2020. "Moth Detection from Pheromone Trap Images Using Deep Learning Object Detectors," Agriculture, MDPI, vol. 10(5), pages 1-12, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng Gao & Jiaxing Xie & Mingxin Yang & Ping Zhou & Wenbin Chen & Gaotian Liang & Yufeng Chen & Xiongzhe Han & Weixing Wang, 2021. "Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM," Agriculture, MDPI, vol. 11(7), pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peng Wang & Jiang Liu & Lijia Xu & Peng Huang & Xiong Luo & Yan Hu & Zhiliang Kang, 2021. "Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
- Saim Khalid & Hadi Mohsen Oqaibi & Muhammad Aqib & Yaser Hafeez, 2023. "Small Pests Detection in Field Crops Using Deep Learning Object Detection," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
- Jozsef Suto, 2022. "Codling Moth Monitoring with Camera-Equipped Automated Traps: A Review," Agriculture, MDPI, vol. 12(10), pages 1-18, October.
- Jozsef Suto, 2022. "A Novel Plug-in Board for Remote Insect Monitoring," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
- Dana Čirjak & Ivan Aleksi & Darija Lemic & Ivana Pajač Živković, 2023. "EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling Moth Population for Early Damage Detection in Apple Orchard," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
More about this item
Keywords
pest management; automatic motor-driven e-trap; computer vision; citrus fly detection and recognition; convolutional neural networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:460-:d:557396. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.