Influences of Soil Bulk Density and Texture on Estimation of Surface Soil Moisture Using Spectral Feature Parameters and an Artificial Neural Network Algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zou, Ping & Yang, Jingsong & Fu, Jianrong & Liu, Guangming & Li, Dongshun, 2010. "Artificial neural network and time series models for predicting soil salt and water content," Agricultural Water Management, Elsevier, vol. 97(12), pages 2009-2019, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2022. "Novel Hybrid Statistical Learning Framework Coupled with Random Forest and Grasshopper Optimization Algorithm to Forecast Pesticide Use on Golf Courses," Agriculture, MDPI, vol. 12(7), pages 1-19, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jinping Zhang & Hongbin Li & Xixi Shi & Yang Hong, 2019. "Wavelet-Nonlinear Cointegration Prediction of Irrigation Water in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2941-2954, June.
- Bingbing Wang & Xiangjie Lu & Yanzhao Ren & Sha Tao & Wanlin Gao, 2022. "Prediction Model and Influencing Factors of CO 2 Micro/Nanobubble Release Based on ARIMA-BPNN," Agriculture, MDPI, vol. 12(4), pages 1-18, March.
- Lei, Guoqing & Zeng, Wenzhi & Yu, Jin & Huang, Jiesheng, 2023. "A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields," Agricultural Water Management, Elsevier, vol. 277(C).
More about this item
Keywords
bulk density; spectral characteristics; artificial neural networks; soil water content;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:8:p:710-:d:602857. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.