IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i6p531-d571361.html
   My bibliography  Save this article

Evolution in Configuration and Productivity of New Zealand Hill Country Sheep and Beef Cattle Systems

Author

Listed:
  • Januarius Gobilik

    (Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag 3, 90509 Sandakan, Sabah, Malaysia)

  • Stephen Todd Morris

    (School of Agriculture and Environment, Massey University PN433, Private Bag 11 222, Palmerston North 4442, New Zealand)

  • Cory Matthew

    (School of Agriculture and Environment, Massey University PN433, Private Bag 11 222, Palmerston North 4442, New Zealand)

Abstract

Metabolic energy budgeting (MEB) was used to evaluate evolution over 30 years (1980–1981 to 2010–2011) in New Zealand southern North Island ‘hill country’ sheep and beef cattle systems. MEB calculates energy required by animals for body weight maintenance, weight gain or loss, pregnancy, and lactation to estimate the system feed demand and thereby provide a basis for calculating feed conversion efficiency. Historic production systems were reconstructed and modeled using averaged data from industry surveys and data from owners’ diaries of three case-study farms and reviewed for patterns of change over time. The modeling indicated that pasture productivity was 11% lower and herbage harvested was 14% lower in 2010–2011 than in the early 1980s. This productivity decline is attributable to warmer, drier summer weather in recent years. However, primarily through increased lambing percentage, feed conversion efficiency based on industry data improved over the study period from 25 to 19 kg feed consumed per kg lamb weaned, while meat production rose from 137 to 147 kg per ha per year. Similar improvements were observed for the three case farms. The New Zealand MEB model was found effective for analysis of tropical beef production systems in Sabah, Malaysia.

Suggested Citation

  • Januarius Gobilik & Stephen Todd Morris & Cory Matthew, 2021. "Evolution in Configuration and Productivity of New Zealand Hill Country Sheep and Beef Cattle Systems," Agriculture, MDPI, vol. 11(6), pages 1-19, June.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:531-:d:571361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/6/531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/6/531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. White, T.A. & Snow, V.O. & King, W.McG., 2010. "Intensification of New Zealand beef farming systems," Agricultural Systems, Elsevier, vol. 103(1), pages 21-35, January.
    2. Jeerasak Chobtang & Sarah J. McLaren & Stewart F. Ledgard & Daniel J. Donaghy, 2017. "Consequential Life Cycle Assessment of Pasture-based Milk Production: A Case Study in the Waikato Region, New Zealand," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1139-1152, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    2. Bonnin, Dennis & Tabacco, Ernesto & Borreani, Giorgio, 2021. "Variability of greenhouse gas emissions and economic performances on 10 Piedmontese beef farms in North Italy," Agricultural Systems, Elsevier, vol. 194(C).
    3. Alemu, Aklilu W. & Amiro, Brian D. & Bittman, Shabtai & MacDonald, Douglas & Ominski, Kim H., 2017. "Greenhouse gas emission of Canadian cow-calf operations: A whole-farm assessment of 295 farms," Agricultural Systems, Elsevier, vol. 151(C), pages 73-83.
    4. Olubode-Awosola, Femi, 2011. "Integrated Assessment Modelling of Complexity in the New Zealand Farming Industry," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115404, New Zealand Agricultural and Resource Economics Society.
    5. Lieffering, Mark & Newton, Paul C.D. & Vibart, Ronaldo & Li, Frank Y., 2016. "Exploring climate change impacts and adaptations of extensive pastoral agriculture systems by combining biophysical simulation and farm system models," Agricultural Systems, Elsevier, vol. 144(C), pages 77-86.
    6. Z. Whitman & T. Wilson & E. Seville & J. Vargo & J. Stevenson & H. Kachali & J. Cole, 2013. "Rural organizational impacts, mitigation strategies, and resilience to the 2010 Darfield earthquake, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1849-1875, December.
    7. Samsonstuen, Stine & Åby, Bente A. & Crosson, Paul & Beauchemin, Karen A. & Bonesmo, Helge & Aass, Laila, 2019. "Farm scale modelling of greenhouse gas emissions from semi-intensive suckler cow beef production," Agricultural Systems, Elsevier, vol. 176(C).
    8. Ash, Andrew & Hunt, Leigh & McDonald, Cam & Scanlan, Joe & Bell, Lindsay & Cowley, Robyn & Watson, Ian & McIvor, John & MacLeod, Neil, 2015. "Boosting the productivity and profitability of northern Australian beef enterprises: Exploring innovation options using simulation modelling and systems analysis," Agricultural Systems, Elsevier, vol. 139(C), pages 50-65.
    9. Herron, Jonathan & Curran, Thomas P. & Moloney, Aidan P. & O'Brien, Donal, 2019. "Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems," Agricultural Systems, Elsevier, vol. 175(C), pages 66-78.
    10. Vogeler, Iris & Vibart, Ronaldo & Cichota, Rogerio, 2017. "Potential benefits of diverse pasture swards for sheep and beef farming," Agricultural Systems, Elsevier, vol. 154(C), pages 78-89.
    11. John Rendel & Alec Mackay & Paul Smale & Andrew Manderson & David Scobie, 2020. "Optimisation of the Resource of Land-Based Livestock Systems to Advance Sustainable Agriculture: A Farm-Level Analysis," Agriculture, MDPI, vol. 10(8), pages 1-23, August.
    12. Lydia J. Farrell & Stephen T. Morris & Paul R. Kenyon & Peter R. Tozer, 2021. "Simulating Beef Cattle Herd Productivity with Varying Cow Liveweight and Fixed Feed Supply," Agriculture, MDPI, vol. 11(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:531-:d:571361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.