IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p967-d649748.html
   My bibliography  Save this article

When It Pays to Catch a Swarm—Evaluation of the Economic Importance of Remote Honey Bee ( Apis mellifera ) Colony Swarming Detection

Author

Listed:
  • Aleksejs Zacepins

    (Department of Computer Systems, Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela iela 2, LV-3001 Jelgava, Latvia)

  • Armands Kviesis

    (Department of Computer Systems, Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela iela 2, LV-3001 Jelgava, Latvia)

  • Vitalijs Komasilovs

    (Department of Computer Systems, Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela iela 2, LV-3001 Jelgava, Latvia)

  • Robert Brodschneider

    (Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria)

Abstract

Precision beekeeping, or precision apiculture, focuses on individual beehive remote monitoring using different measurement systems and sensors. Sometimes, there are debates about the necessity for such systems and the real-life benefits of the substitution of bee colony manual inspection by automatic systems. Remote systems offer many advantages, but also have their disadvantages and costs. We evaluated the economic benefits of the remote detection of the bee colonies’ reproductive state of swarming. We propose two economic models for predicting differences in the benefits of catching a swarm depending on its travel distance. Models are tested by comparing the situation in four different countries (Austria, Ethiopia, Indonesia, and Latvia). The economic model is based on financial losses caused by bee colony swarming and considers the effort needed to catch the swarm following a remote swarm detection event. The economic benefit of catching a swarm after a remote precision beekeeping notification is shown to be a function of the distance/time to reach the apiary. The possible technical range is tempting, but we demonstrated that remote sensing is economically limited by the ability to physically reach the apiary and interact in time, or alternatively, inform a person living close by. An advanced economic model additionally includes the swarm catching probability, which decreases based on travel distance/time. Based on exemplary values from the four countries, the economic potential of detecting and informing beekeepers about swarming events is calculated.

Suggested Citation

  • Aleksejs Zacepins & Armands Kviesis & Vitalijs Komasilovs & Robert Brodschneider, 2021. "When It Pays to Catch a Swarm—Evaluation of the Economic Importance of Remote Honey Bee ( Apis mellifera ) Colony Swarming Detection," Agriculture, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:967-:d:649748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/967/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/967/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    2. Despina Popovska Stojanov & Lazo Dimitrov & Jiří Danihlík & Aleksandar Uzunov & Miroljub Golubovski & Sreten Andonov & Robert Brodschneider, 2021. "Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries," Agriculture, MDPI, vol. 11(5), pages 1-11, April.
    3. Randal R. Rucker & Walter N. Thurman & Michael Burgett, 2019. "Colony Collapse and the Consequences of Bee Disease: Market Adaptation to Environmental Change," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(5), pages 927-960.
    4. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Despina Popovska Stojanov & Lazo Dimitrov & Jiří Danihlík & Aleksandar Uzunov & Miroljub Golubovski & Sreten Andonov & Robert Brodschneider, 2021. "Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries," Agriculture, MDPI, vol. 11(5), pages 1-11, April.
    2. Balzan, Mario V & Caruana, Julio & Zammit, Annrica, 2018. "Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state," Land Use Policy, Elsevier, vol. 75(C), pages 711-725.
    3. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    4. Lippert, Christian & Feuerbacher, Arndt & Narjes, Manuel, 2021. "Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations," Ecological Economics, Elsevier, vol. 180(C).
    5. Nicholas W Calderone, 2012. "Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-27, May.
    6. repec:idb:brikps:64718 is not listed on IDEAS
    7. Ioannis Arzoumanidis & Andrea Raggi & Luigia Petti, 2019. "Life Cycle Assessment of Honey: Considering the Pollination Service," Administrative Sciences, MDPI, vol. 9(1), pages 1-13, March.
    8. Centner, Terence J. & Brewer, Brady & Leal, Isaac, 2018. "Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species," Land Use Policy, Elsevier, vol. 75(C), pages 70-76.
    9. Margot Karlikow & Evan Amalfitano & Xiaolong Yang & Jennifer Doucet & Abigail Chapman & Peivand Sadat Mousavi & Paige Homme & Polina Sutyrina & Winston Chan & Sofia Lemak & Alexander F. Yakunin & Adam, 2023. "CRISPR-induced DNA reorganization for multiplexed nucleic acid detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Melathopoulos, Andony P. & Stoner, Alexander M., 2015. "Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms," Ecological Economics, Elsevier, vol. 117(C), pages 173-181.
    11. Laura Christ & Daniel C. Dreesmann, 2022. "SAD but True: Species Awareness Disparity in Bees Is a Result of Bee-Less Biology Lessons in Germany," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    12. Giannini, Tereza C. & Acosta, André L. & Garófalo, Carlos A. & Saraiva, Antonio M. & Alves-dos-Santos, Isabel & Imperatriz-Fonseca, Vera L., 2012. "Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil," Ecological Modelling, Elsevier, vol. 244(C), pages 127-131.
    13. Tremlett, Constance J. & Peh, Kelvin S.-H. & Zamora-Gutierrez, Veronica & Schaafsma, Marije, 2021. "Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico," Ecosystem Services, Elsevier, vol. 47(C).
    14. Halbich, Cestmir & Vostrovsky, Vaclav, 2012. "Monitoring of infection pressure of American Foulbrood disease by means of Google Maps," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 4(4), pages 1-8, December.
    15. Vanessa Gabel & Robert Home & Sibylle Stöckli & Matthias Meier & Matthias Stolze & Ulrich Köpke, 2018. "Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    16. Thompson, Wyatt & Lu, Yaqiong & Gerlt, Scott & Yang, Xianyu & Campbell, J. Elliott & Kueppers, Lara M. & Snyder, Mark A., 2018. "Automatic Responses of Crop Stocks and Policies Buffer Climate Change Effects on Crop Markets and Price Volatility," Ecological Economics, Elsevier, vol. 152(C), pages 98-105.
    17. Letourneau, Deborah K. & Ando, Amy W. & Jedlicka, Julie A. & Narwani, Anita & Barbier, Edward, 2015. "Simple-but-sound methods for estimating the value of changes in biodiversity for biological pest control in agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 215-225.
    18. Costanza, Robert & Howarth, Richard B. & Kubiszewski, Ida & Liu, Shuang & Ma, Chunbo & Plumecocq, Gaël & Stern, David I., 2016. "Influential publications in ecological economics revisited," Ecological Economics, Elsevier, vol. 123(C), pages 68-76.
    19. Nuppenau, Ernst-August, 2011. "Linking Crop Rotation and Fertility Management by a Transition Matrix: Spatial and Dynamic Aspects in Programming of Ecosystem Service," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114600, European Association of Agricultural Economists.
    20. Francois Bareille & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2021. "Cooperative Management of Ecosystem Services: Coalition Formation, Landscape Structure and Policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 323-356, June.
    21. Hong Zhang & Chao Han & Tom D. Breeze & Mengdan Li & Shibonage K. Mashilingi & Jun Hua & Wenbin Zhang & Xuebin Zhang & Shiwen Zhang & Jiandong An, 2022. "Bumblebee Pollination Enhances Yield and Flavor of Tomato in Gobi Desert Greenhouses," Agriculture, MDPI, vol. 12(6), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:967-:d:649748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.