IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2020i1p14-d469182.html
   My bibliography  Save this article

Persistence of Human Pathogens in Manure-Amended Australian Soils Used for Production of Leafy Vegetables

Author

Listed:
  • Jennifer Ekman

    (Applied Horticultural Research, Biosciences Building, 1 Central Avenue, Eveleigh, Sydney, NSW 2015, Australia)

  • Adam Goldwater

    (Applied Horticultural Research, Biosciences Building, 1 Central Avenue, Eveleigh, Sydney, NSW 2015, Australia)

  • Mark Bradbury

    (ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, University of Sydney, LEES Building, Chippendale, Sydney, NSW 2006, Australia)

  • Jim Matthews

    (Sydney Informatics and Data Science Hub, University of Sydney, Queen St, Chippendale, Sydney, NSW 2006, Australia)

  • Gordon Rogers

    (Applied Horticultural Research, Biosciences Building, 1 Central Avenue, Eveleigh, Sydney, NSW 2015, Australia)

Abstract

Incorporation of manures into soil can add nutrients, improve soil structure and enhance biodiversity, thereby improving the sustainability of vegetable production systems. Unfortunately, manures can also potentially contain human enteric pathogens. To reduce the risk of contamination, Australian guidelines recommend a withholding period of 90 days between manure application and harvest for high-risk products such as leafy salad greens. Our study examined the appropriateness of these guidelines under conditions replicating those on a commercial vegetable farm. Cow manure and poultry litter with/without addition of non-pathogenic strains of Escherichia coli (E. coli) , Listeria innocua and Salmonella sv. sofia were added to sandy and clay loam soils typical of those used to grow vegetables. Bacterial populations were monitored in the soil and on crops of cos lettuce during spring (A), summer (B) and autumn (C) trials, with testing conducted by a commercial laboratory. Significant declines in E. coli occurred within 6 to 16 days in all trials. Modelling indicated that E. coli populations would be at or close to the limit of detection within 50 days for all of the combinations tested. A 2–3 log die-off of Salmonella spp. occurred within three weeks. However, occasional detections continued throughout trial A. As a result, the probability of detection after 50 days fell from 1.0 to 0.1 and 0.02 in trials B and C, respectively, but remained at 0.44 in trial A. Listeria spp. was the most persistent in soil but was not detected on lettuce at commercial maturity. While this study was limited in scope, the results suggest that a 90 day withholding period between application of manure and harvest significantly reduces risk from enteric pathogens under Australian field conditions.

Suggested Citation

  • Jennifer Ekman & Adam Goldwater & Mark Bradbury & Jim Matthews & Gordon Rogers, 2020. "Persistence of Human Pathogens in Manure-Amended Australian Soils Used for Production of Leafy Vegetables," Agriculture, MDPI, vol. 11(1), pages 1-18, December.
  • Handle: RePEc:gam:jagris:v:11:y:2020:i:1:p:14-:d:469182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Teunis & Katsuhisa Takumi & Kunihiro Shinagawa, 2004. "Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 401-407, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helen E. Clough & Daymian Clancy & Nigel P. French, 2006. "Vero‐Cytotoxigenic Escherichia coli O157 in Pasteurized Milk Containers at the Point of Retail: A Qualitative Approach to Exposure Assessment," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1291-1309, October.
    2. Peyton M. Ferrier & Jean C. Buzby, 2013. "The Economic Efficiency of Sampling Size: The Case of Beef Trim," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 368-384, March.
    3. Miao Guo & Abhinav Mishra & Robert L. Buchanan & Jitender P. Dubey & Dolores E. Hill & H. Ray Gamble & Jeffrey L. Jones & Xianzhi Du & Abani K. Pradhan, 2016. "Development of Dose‐Response Models to Predict the Relationship for Human Toxoplasma gondii Infection Associated with Meat Consumption," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 926-938, May.
    4. Lailai Chen & Helena Geys & Shaun Cawthraw & Arie Havelaar & Peter Teunis, 2006. "Dose Response for Infectivity of Several Strains of Campylobacter jejuni in Chickens," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1613-1621, December.
    5. Gang Xie & Anne Roiko & Helen Stratton & Charles Lemckert & Peter K. Dunn & Kerrie Mengersen, 2017. "Guidelines for Use of the Approximate Beta‐Poisson Dose–Response Model," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1388-1402, July.
    6. B. Chapman & K. Pintar & B. A. Smith, 2018. "Multi‐Exposure Pathway Model to Compare Escherichia coli O157 Risks and Interventions," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 392-409, February.
    7. Christopher Leleu & Jean Menotti & Pascale Meneceur & Firas Choukri & Annie Sulahian & Yves Jean‐François Garin & Jean‐Baptiste Denis & Francis Derouin, 2013. "Bayesian Development of a Dose‐Response Model for Aspergillus fumigatus and Invasive Aspergillosis," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1441-1453, August.
    8. Gang Xie & Anne Roiko & Helen Stratton & Charles Lemckert & Peter K. Dunn & Kerrie Mengersen, 2016. "A Generalized QMRA Beta‐Poisson Dose‐Response Model," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1948-1958, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2020:i:1:p:14-:d:469182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.