IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v34y2010i3p188-199.html
   My bibliography  Save this article

Overcoming growing water scarcity: Exploring potential improvements in water productivity in India

Author

Listed:
  • Upali A. Amarasinghe
  • R.P. S. Malik
  • Bharat R. Sharma

Abstract

Improvements in water productivity (WP) are often suggested as one of the alternative strategies for overcoming growing water scarcity in India. This paper explores the potential improvements in WP of food grains at district level, which currently varies between 0.11 and 1.01 kilogram per cubic metre (kg/m3), in the 403 districts that account for 98% of the total production of food grains. The paper first finds the maximum yield function conditional on consumptive water use (CWU) and then explores the potential improvements in WP by: (a) bridging the gap between actual and maximum yield while keeping CWU constant; and (b) changing the maximum yield by adjusting the CWU using supplementary or deficit irrigation. Deficit irrigation in some areas may decrease yield but can increase production if land availability is not a constraint. A large potential exists for bridging the yield gap in irrigated areas with CWU between 300 and 475 mm. Of the 222 districts that fall under this category, a 50% reduction in yield gap alone could increase production by 100 million tonnes (Mt) without increasing CWU. Supplementary irrigation can increase yield and WP in rain‐fed and irrigated areas of 266 and 16 districts with CWU is below 300 mm. Deficit irrigation in irrigated areas of 185 districts with CWU above 475 mm could increase yield, WP and production. Decreasing CWU in irrigated areas with CWU between 425 and 475 mm reduces yield slightly, but if availability of land is not a constraint then the benefits due to water saving and production increases could exceed the cost.

Suggested Citation

  • Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
  • Handle: RePEc:wly:natres:v:34:y:2010:i:3:p:188-199
    DOI: 10.1111/j.1477-8947.2010.01305.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1477-8947.2010.01305.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1477-8947.2010.01305.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," Book Chapters,, International Water Management Institute.
    3. Seckler, D., 1996. "The new era of water resources management: from \dry\ to \wet\ water savings," IWMI Research Reports H018206, International Water Management Institute.
    4. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    5. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    6. Upali A. Amarasinghe & Tushaar Shah & Peter G. McCornick, 2008. "Seeking calm water: Exploring policy options for India's water future," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 305-315, November.
    7. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    8. Kumar, M. Dinesh & van Dam, Jos C., 2009. "Improving water productivity in agriculture in India: beyond ‘more crop per drop’," Book Chapters,, International Water Management Institute.
    9. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," IWMI Books, Reports H032641, International Water Management Institute.
    10. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    11. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    12. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    13. Perry, C. J. & Narayanamurthy, S. G., 1998. "Farmer response to rationed and uncertain irrigation supplies," IWMI Research Reports H022447, International Water Management Institute.
    14. Sharma, Bharat R. & Rao, K.V. & Vittal, K.P.R. & Ramakrishna, Y.S. & Amarasinghe, U., 2010. "Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements," Agricultural Water Management, Elsevier, vol. 97(1), pages 23-30, January.
    15. Palanisami, Kuppannan & Senthilvel, S. & Ramesh, T., 2009. "Water productivity at different scales under canal, tank and well irrigation systems," Book Chapters,, International Water Management Institute.
    16. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    17. Sakthivadivel, Ramasamy & Thiruvengadachari, S. & Amarasinghe, Upali A., 1999. "Modernization using the structured system design of the Bhadra Reservoir Project, India: An intervention analysis," IWMI Research Reports 61104, International Water Management Institute.
    18. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    19. Perry, Christopher J. & Narayanamurthy, S.G., 1998. "Farmer response to rationed and uncertain irrigation supplies," IWMI Research Reports 44582, International Water Management Institute.
    20. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    21. Kuppannan, Palanisami & Senthilvel, S. & Ramesh, T., 2009. "Water productivity at different scales under canal, tank and well irrigation systems," IWMI Books, Reports H042041, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    2. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    3. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    4. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    5. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    6. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    7. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    8. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    9. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    10. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    11. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    12. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    13. Muthuwatta, L.P. & Rientjes, T.H.M. & Bos, M.G., 2013. "Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran," Agricultural Water Management, Elsevier, vol. 124(C), pages 1-10.
    14. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    15. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    16. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    17. Kumar, M. Dinesh & van Dam, J. C., 2008. "Improving water productivity in agriculture in developing economies: in search of new avenues," IWMI Conference Proceedings 245276, International Water Management Institute.
    18. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    19. Scheierling, Susanne M. & Treguer, David O. & Booker, James F., 2015. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205677, Agricultural and Applied Economics Association.
    20. Lecina, S. & Neale, C.M.U. & Merkley, G.P. & Dos Santos, C.A.C., 2011. "Irrigation evaluation based on performance analysis and water accounting at the Bear River Irrigation Project (U.S.A.)," Agricultural Water Management, Elsevier, vol. 98(9), pages 1349-1363, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:34:y:2010:i:3:p:188-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.