IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i3p81-d332837.html
   My bibliography  Save this article

Energy and Economic Efficiency of Maize Agroecosystem under Three Management Strategies in the Frailesca, Chiapas (Mexico)

Author

Listed:
  • Franklin B. Martínez

    (Estudiante de Doctorado en Ciencias Agropecuarias y Sustentabilidad, Universidad Autónoma de Chiapas (UNACH), Carretera Ocozocoautla—Villaflores Km. 84.5, Villaflores C.P. 30470, Mexico)

  • Francisco Guevara

    (Investigador de la Universidad Autónoma de Chiapas (UNACH), Facultad de Ciencias Agronómicas. Carretera Ocozocoautla-Villaflores Km. 84.5, Villaflores C.P. 30470, Mexico)

  • Carlos E. Aguilar

    (Investigador de la Universidad Autónoma de Chiapas (UNACH), Facultad de Ciencias Agronómicas. Carretera Ocozocoautla-Villaflores Km. 84.5, Villaflores C.P. 30470, Mexico)

  • René Pinto

    (Investigador de la Universidad Autónoma de Chiapas (UNACH), Facultad de Ciencias Agronómicas. Carretera Ocozocoautla-Villaflores Km. 84.5, Villaflores C.P. 30470, Mexico)

  • Manuel A. La O

    (Investigador de la Universidad Autónoma de Chiapas (UNACH), Facultad de Ciencias Agronómicas. Carretera Ocozocoautla-Villaflores Km. 84.5, Villaflores C.P. 30470, Mexico)

  • Luis A. Rodríguez

    (Investigador de Facultad de Ingeniería, Sede Villa Corzo. Universidad de Ciencias y Artes de Chiapas (UNICACH), Carretera Villa Corzo-Monterrey Km 3, Villa Corzo C.P. 30520, Mexico)

  • Deb R. Aryal

    (Facultad de Ciencias Agronómicas, CONACYT-UNACH, Villaflores C.P. 30470, Mexico)

Abstract

Analysis of energy flows and economic dynamics allows the diversity of variables involved in the agroecosystem production to be observed in the same dimension. In this way, efficiency and performance can be analysed integrally to identify critical points to be improved. The objective of this study was to analyse the energy-economic efficiency within three management strategies (Management I, Management II and Management III) of the maize agroecosystem in the Frailesca region of Chiapas (Mexico). The hypothesis was that systemic typologies, defined by modes of production, can lead to different efficiencies for the system performance. The study was descriptive; case studies were selected as representative based on their technological variants. The efficiency analysis was conducted using a balance of inputs and outputs expressed in energy and economic terms. Management III resulted in better energy use efficiency, with 6.47, while Management I and Management II were more economically feasible, with a benefit/cost ratio of 1.56 pesos.

Suggested Citation

  • Franklin B. Martínez & Francisco Guevara & Carlos E. Aguilar & René Pinto & Manuel A. La O & Luis A. Rodríguez & Deb R. Aryal, 2020. "Energy and Economic Efficiency of Maize Agroecosystem under Three Management Strategies in the Frailesca, Chiapas (Mexico)," Agriculture, MDPI, vol. 10(3), pages 1-15, March.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:3:p:81-:d:332837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/3/81/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/3/81/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    2. Ferraro, Diego Omar, 2012. "Energy use in cropping systems: A regional long-term exploratory analysis of energy allocation and efficiency in the Inland Pampa (Argentina)," Energy, Elsevier, vol. 44(1), pages 490-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxu Liu & Heng Wang & Sanzidur Rahman & Songsak Sriboonchitta, 2021. "Energy Efficiency, Energy Conservation and Determinants in the Agricultural Sector in Emerging Economies," Agriculture, MDPI, vol. 11(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    2. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    3. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    4. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    5. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    6. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    7. Jéssica Bárbara da Silva & Edvaldo Pereira Santos Júnior & João Gabriel Távora Pedrosa & Aldo Torres Sales & Everardo Valadares de Sa Barretto Sampaio & Rômulo Simões Cezar Menezes & Emmanuel Damilano, 2022. "Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region," Energies, MDPI, vol. 15(14), pages 1-16, July.
    8. Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
    9. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    10. Chandel, Rupinder & Raj, Ritu & Kaur, Arpandeep & Singh, Kuldeep & Kataria, Sanjeev Kumar, 2024. "Energy and yield optimization of field and vegetable crops in heavy crop residue for Indian conditions-climate smart techniques for food security," Energy, Elsevier, vol. 287(C).
    11. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    12. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    13. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    14. Iosvany López-Sandin & Guadalupe Gutiérrez-Soto & Adriana Gutiérrez-Díez & Nancy Medina-Herrera & Edgar Gutiérrez-Castorena & Francisco Zavala-García, 2019. "Evaluation of the Use of Energy in the Production of Sweet Sorghum ( Sorghum Bicolor (L.) Moench) under Different Production Systems," Energies, MDPI, vol. 12(9), pages 1-13, May.
    15. Milazzo, M.F. & Spina, F. & Vinci, A. & Espro, C. & Bart, J.C.J., 2013. "Brassica biodiesels: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 350-389.
    16. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    17. Singh, Pritpal & Sandhu, Amarjeet Singh, 2023. "Energy budgeting and economics of potato (Solanum tuberosum L.) cultivation under different sowing methods in north-western India," Energy, Elsevier, vol. 269(C).
    18. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    19. Kosemani, Babajide S. & Bamgboye, A. Isaac, 2020. "Energy input-output analysis of rice production in Nigeria," Energy, Elsevier, vol. 207(C).
    20. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:3:p:81-:d:332837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.