IDEAS home Printed from https://ideas.repec.org/a/fru/finjrn/190206p81-95.html
   My bibliography  Save this article

DSGE Models: Problem of Trends

Author

Listed:
  • Sergey M. Ivashchenko

    (Institute of Regional Economy Problems of the Russian Academy of Sciences, St Petersburg 190013, Russia; Financial Research Institute, Moscow 127006, Russia; St Petersburg University, St Petersburg 199034, Russia)

Abstract

There are trends (deterministic and stochastic) in the most macroeconomic time series. Dynamic Stochastic General Equilibrium (DSGE) models have to take into account these data features. Data detrending is one of the popular approaches that imply exogenous (to the model) decomposition of time series into cycle and trend components, and dropping of the last one. The aim of the paper is to analyze the consequences of such approach. This paper shows that the methods described above distort the model, save some specific conditions. If one of the following conditions remains, then detrending disturbs the model unsystematically. Trend is eliminated from each time series separately. One variable has different nonlinear transformation than the other (example: one variable is in-logs while the other in-levels). Correlation of trend divergence (i.e. difference between trends of one and another variable) with exogenous shocks is incorrect (correct correlation can be nonzero). If trends are dropped from the model, then detrending distorts the model systematically. The author presents numerical results of detrending analysis and creates DSGE model. Then the model was estimated on multiple arrays of simulated data with different detrending schemes including the absence of detrending. Data detrending leads to 1.5–3 times higher errors of parameters estimation. More flexible detrending scheme leads to worse results (HP filter produces the worst result). However, if trend is eliminated from the data and DSGE model without trend is used then estimation errors increases additionally by 4–10 times.

Suggested Citation

  • Sergey M. Ivashchenko, 2019. "DSGE Models: Problem of Trends," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 2, pages 81-95, April.
  • Handle: RePEc:fru:finjrn:190206:p:81-95
    DOI: 10.31107/2075-1990-2019-2-81-95
    as

    Download full text from publisher

    File URL: http://www.finjournal-nifi.ru/images/FILES/Journal/Archive/2019/2/statii/fm_2019_2_06.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31107/2075-1990-2019-2-81-95?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lombardo, Giovanni & Vestin, David, 2008. "Welfare implications of Calvo vs. Rotemberg-pricing assumptions," Economics Letters, Elsevier, vol. 100(2), pages 275-279, August.
    2. Sergey Ivashchenko, 2015. "A 5-sector DSGE Model of Russia," EUSP Department of Economics Working Paper Series 2015/01, European University at St. Petersburg, Department of Economics.
    3. Sergey Ivashchenko, 2015. "A 5-sector DSGE Model of Russia," EUSP Department of Economics Working Paper Series Ec-01/15, European University at St. Petersburg, Department of Economics.
    4. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non‐stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
    5. Stephanie Schmitt-Grohe & Martin Uribe, 2011. "Business Cycles With A Common Trend in Neutral and Investment-Specific Productivity," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 122-135, January.
    6. Ambriško, Róbert & Babecký, Jan & Ryšánek, Jakub & Valenta, Vilém, 2015. "Assessing the impact of fiscal measures on the Czech economy," Economic Modelling, Elsevier, vol. 44(C), pages 350-357.
    7. Jordi Galí & J. David López-Salido & Javier Vallés, 2007. "Understanding the Effects of Government Spending on Consumption," Journal of the European Economic Association, MIT Press, vol. 5(1), pages 227-270, March.
    8. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    9. Ivashchenko, S., 2013. "Dynamic Stochastic General Equilibrium Model with Banks and Endogenous Defaults of Firms," Journal of the New Economic Association, New Economic Association, vol. 19(3), pages 27-50.
    10. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    11. Chaudourne, Jeremy & Fève, Patrick & Guay, Alain, 2014. "Understanding the effect of technology shocks in SVARs with long-run restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 154-172.
    12. Anton I. Votinov & Maria A. Elkina, 2018. "Estimation of Fiscal Stimulus Efficiency in Russian Economy: Simple DSGE Model With Government Sector," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 5, pages 83-96, October.
    13. Ferroni Filippo, 2011. "Trend Agnostic One-Step Estimation of DSGE Models," The B.E. Journal of Macroeconomics, De Gruyter, vol. 11(1), pages 1-36, July.
    14. Ascari, Guido & Castelnuovo, Efrem & Rossi, Lorenza, 2011. "Calvo vs. Rotemberg in a trend inflation world: An empirical investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1852-1867.
    15. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    16. Capek Jan, 2015. "Estimating DSGE model parameters in a small open economy: Do real-time data matter?," Review of Economic Perspectives, Sciendo, vol. 15(1), pages 89-114, March.
    17. Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
    18. Polbin, Andrey, 2014. "Econometric estimation of a structural macroeconomic model for the Russian economy," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 3-29.
    19. Mikhail Yu. Andreyev & Andrey V. Polbin, 2018. "The Impact of Fiscal Policy on Macroeconomic Indicators in DSGE-models," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 21-33, June.
    20. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-31.
    21. Ivashchenko, S., 2013. "Dynamic Stochastic General Equilibrium Model with Banks and Endogenous Defaults of Firms," Journal of the New Economic Association, New Economic Association, vol. 19(3), pages 27-50.
    22. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    23. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivashchenko, S., 2020. "Long-term growth sources for sectors of Russian economy," Journal of the New Economic Association, New Economic Association, vol. 48(4), pages 86-112.
    2. Sergey Ivashchenko, 2022. "Dynamic Stochastic General Equilibrium Model with Multiple Trends and Structural Breaks," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 46-72, March.
    3. Votinov, A., 2022. "The effects of additional non-stationary processes on the properties of DSGE-models," Journal of the New Economic Association, New Economic Association, vol. 55(3), pages 28-43.
    4. Vladimir V. Olkhovik & Olga I. Lyutova & Edvardas Juchnevicius, 2022. "Economic Growth Models and FDI in the CIS Countries During the Period of Digitalization," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 2, pages 73-90, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivashchenko, S., 2020. "Long-term growth sources for sectors of Russian economy," Journal of the New Economic Association, New Economic Association, vol. 48(4), pages 86-112.
    2. Sergey Ivashchenko, 2022. "Dynamic Stochastic General Equilibrium Model with Multiple Trends and Structural Breaks," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 46-72, March.
    3. Benchimol, Jonathan & Ivashchenko, Sergey, 2021. "Switching volatility in a nonlinear open economy," Journal of International Money and Finance, Elsevier, vol. 110(C).
    4. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    5. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    6. Sergey Ivashchenko, 2015. "A 5-sector DSGE Model of Russia," EUSP Department of Economics Working Paper Series 2015/01, European University at St. Petersburg, Department of Economics.
    7. Patrizio Tirelli & Maria Ferrara, 2020. "Disinflation, Inequality, And Welfare In A Tank Model," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1297-1313, July.
    8. Sergey Ivashchenko, 2014. "Forecasting in a Non-Linear DSGE Model," EUSP Department of Economics Working Paper Series Ec-02/14, European University at St. Petersburg, Department of Economics.
    9. Иващенко Сергей Михайлович, 2016. "Многосекторная Модель Динамического Стохастического Общего Экономического Равновесия Российской Экономики," Vestnik of the St. Petersburg University. Series 5. Economics Вестник Санкт-Петербургского университета. Серия 5. Экономика, CyberLeninka;Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет», issue 3, pages 176-202.
    10. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    11. Gadatsch, Niklas & Stähler, Nikolai & Weigert, Benjamin, 2016. "German labor market and fiscal reforms 1999–2008: Can they be blamed for intra-euro area imbalances?," Journal of Macroeconomics, Elsevier, vol. 50(C), pages 307-324.
    12. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    13. Adnan Haider & Musleh ud Din & Ejaz Ghani, 2012. "Monetary Policy, Informality and Business Cycle Fluctuations in a Developing Economy Vulnerable to External Shocks," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 51(4), pages 609-681.
    14. Ratto, Marco & Roeger, Werner & Veld, Jan in 't, 2009. "QUEST III: An estimated open-economy DSGE model of the euro area with fiscal and monetary policy," Economic Modelling, Elsevier, vol. 26(1), pages 222-233, January.
    15. Martin Slanicay & Jan Čapek & Miroslav Hloušek, 2016. "Some Notes On Problematic Issues In Dsge Models," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 61(210), pages 79-100, July - Se.
    16. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    17. Acocella, Nicola & Beqiraj, Elton & Di Bartolomeo, Giovanni & Di Pietro, Marco & Felici, Francesco & Alleva, Giorgio & Di Dio, Fabio & Liseo, Brunero, 2020. "A stochastic estimated version of the Italian dynamic General Equilibrium Model," Economic Modelling, Elsevier, vol. 92(C), pages 339-357.
    18. Nora Traum & Shu‐Chun S. Yang, 2015. "When Does Government Debt Crowd Out Investment?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 24-45, January.
    19. Stähler, Nikolai & Gadatsch, Niklas & Hauzenberger, Klemens, 2014. "Getting into GEAR: German and the Rest of Euro Area Fiscal Policy During the Crisis," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100460, Verein für Socialpolitik / German Economic Association.
    20. Canova, Fabio, 2014. "Bridging DSGE models and the raw data," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 1-15.

    More about this item

    Keywords

    DSGE; trend; detrending; HP-filter; estimation accuracy; RMSE;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fru:finjrn:190206:p:81-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gennady Ageev (email available below). General contact details of provider: https://edirc.repec.org/data/frigvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.