IDEAS home Printed from https://ideas.repec.org/a/for/ijafaa/y2015i36p5-12.html
   My bibliography  Save this article

Improving Forecast Quality in Practice

Author

Listed:
  • Robert Fildes
  • Fotios Petropoulos

Abstract

Robert and Fotios discuss the results of their important new survey on the key elements for improving the quality of the forecasting function. A lot more is involved here than software and statistical methodology; it?s also about removing organizational impediments, developing appropriate performance benchmarks and motivational incentives, and improving data reliability and flow within the organization. Copyright International Institute of Forecasters, 2015

Suggested Citation

  • Robert Fildes & Fotios Petropoulos, 2015. "Improving Forecast Quality in Practice," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 36, pages 5-12, Winter.
  • Handle: RePEc:for:ijafaa:y:2015:i:36:p:5-12
    as

    Download full text from publisher

    File URL: https://foresight.forecasters.org/shop/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    2. Reimers, Stian & Harvey, Nigel, 2024. "Bars, lines and points: The effect of graph format on judgmental forecasting," International Journal of Forecasting, Elsevier, vol. 40(1), pages 44-61.
    3. Zoe Theocharis & Leonard A. Smith & Nigel Harvey, 2019. "The influence of graphical format on judgmental forecasting accuracy: Lines versus points," Futures & Foresight Science, John Wiley & Sons, vol. 1(1), March.
    4. Phillips, Christina Jane & Nikolopoulos, Konstantinos, 2019. "Forecast quality improvement with Action Research: A success story at PharmaCo," International Journal of Forecasting, Elsevier, vol. 35(1), pages 129-143.
    5. Khosrowabadi, Naghmeh & Hoberg, Kai & Imdahl, Christina, 2022. "Evaluating human behaviour in response to AI recommendations for judgemental forecasting," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1151-1167.
    6. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    9. Theocharis, Zoe & Harvey, Nigel, 2019. "When does more mean worse? Accuracy of judgmental forecasting is nonlinearly related to length of data series," Omega, Elsevier, vol. 87(C), pages 10-19.
    10. Christiane B. Haubitz & Cedric A. Lehmann & Andreas Fügener & Ulrich W. Thonemann, 2021. "The Risk of Algorithm Transparency: How Algorithm Complexity Drives the Effects on Use of Advice," ECONtribute Discussion Papers Series 078, University of Bonn and University of Cologne, Germany.
    11. Cedric A. Lehmann & Christiane B. Haubitz & Andreas Fügener & Ulrich W. Thonemann, 2022. "The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3419-3434, September.
    12. Michael Pedersen, 2024. "Judgment in macroeconomic output growth predictions: Efficiency, accuracy and persistence," Papers 2404.04105, arXiv.org.
    13. Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
    14. Hewage, Harsha Chamara & Perera, H. Niles & De Baets, Shari, 2022. "Forecast adjustments during post-promotional periods," European Journal of Operational Research, Elsevier, vol. 300(2), pages 461-472.
    15. De Baets, Shari & Harvey, Nigel, 2020. "Using judgment to select and adjust forecasts from statistical models," European Journal of Operational Research, Elsevier, vol. 284(3), pages 882-895.
    16. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    17. Petropoulos, Fotios & Fildes, Robert & Goodwin, Paul, 2016. "Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 842-852.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:for:ijafaa:y:2015:i:36:p:5-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Gilliland (email available below). General contact details of provider: https://edirc.repec.org/data/iiforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.