IDEAS home Printed from https://ideas.repec.org/a/fip/fedlrv/00107.html
   My bibliography  Save this article

Comparing Measures of Potential Output

Author

Listed:
  • Amy Y. Guisinger
  • Michael T. Owyang
  • Hannah Shell

Abstract

One of the goals of stabilization policy is to reduce the output gap?the difference between potential and actual output?during downturns. Potential output, however, is an unobserved variable whose definition can vary. For example, some view potential output as the level of output that can be produced when employment is at the natural rate. Others use trend measures of output to measure potential. We survey some of these measures using both full-sample data (all of the data that would be available through June 2017) and real-time data (the actual data that would have been available at different points in the sample). We construct six different measures of potential: a linear trend, a quadratic trend, the Congressional Budget Office measure, and three filtered trends. We compare these measures across methods and across time. We also use the measures to compute the monetary policy prescription in a standard interest rate rule and find very little difference across methods.

Suggested Citation

  • Amy Y. Guisinger & Michael T. Owyang & Hannah Shell, 2018. "Comparing Measures of Potential Output," Review, Federal Reserve Bank of St. Louis, vol. 100(4), pages 297-316.
  • Handle: RePEc:fip:fedlrv:00107
    DOI: doi.org/10.20955/r.100.297-316
    as

    Download full text from publisher

    File URL: https://doi.org/10.20955/r.100.297-316
    File Function: https://doi.org/10.20955/r.100.297-316
    Download Restriction: no

    File URL: https://files.stlouisfed.org/files/htdocs/publications/review/2018/10/15/comparing-measures-of-potential-output.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/doi.org/10.20955/r.100.297-316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tara M. Sinclair, 2009. "The Relationships between Permanent and Transitory Movements in U.S. Output and the Unemployment Rate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 529-542, March.
    2. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    3. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    4. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    5. Arabinda Basistha & Richard Startz, 2008. "Measuring the NAIRU with Reduced Uncertainty: A Multiple-Indicator Common-Cycle Approach," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 805-811, November.
    6. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    7. Marcellino, Massimiliano & Musso, Alberto, 2011. "The reliability of real-time estimates of the euro area output gap," Economic Modelling, Elsevier, vol. 28(4), pages 1842-1856, July.
    8. Mardi Dungey & Jan P.A.M. Jacobs & Jing Tian, 2017. "Forecasting output gaps in the G-7 countries: the role of correlated innovations and structural breaks," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4554-4566, September.
    9. James D. Hamilton, 2017. "Why You Should Never Use the Hodrick-Prescott Filter," NBER Working Papers 23429, National Bureau of Economic Research, Inc.
    10. Julien Champagne & Guillaume Poulin‐Bellisle & Rodrigo Sekkel, 2018. "The Real‐Time Properties of the Bank of Canada's Staff Output Gap Estimates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1167-1188, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédérique Bec & Patrick Kanda, 2019. "Is inflation driven by survey-based, VAR-based or myopic expectations?," Working Papers hal-02175836, HAL.
    2. Bec, Frédérique & Kanda, Patrick, 2020. "Is inflation driven by survey-based, VAR-based or myopic expectations? An empirical assessment from US real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    3. Dovern, Jonas & Zuber, Christopher, 2020. "How economic crises damage potential output – Evidence from the Great Recession," Journal of Macroeconomics, Elsevier, vol. 65(C).
    4. Granados, Camilo & Parra-Amado, Daniel, 2024. "Estimating the output gap after COVID: How to address unprecedented macroeconomic variations," Economic Modelling, Elsevier, vol. 135(C).
    5. Cicilia Anggadewi Harun & Wishnu Mahraddika & Jati Waluyo & Pakasa Bary & Rieska Indah Astuti & Fauzan Rachman & Rizky Primayudha & Dwi Oktaviyanti & Euis Aqmaliyah, 2021. "Business And Financial Cycle In Indonesia: An Integrated Approach," Working Papers WP/05/2021, Bank Indonesia.
    6. Remzi Baris Tercioglu, 2020. "A sectoral approach to measuring output gap: Evidence from 20 US sectors over 1948-2019," Working Papers 2012, New School for Social Research, Department of Economics, revised Jun 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Astudillo, Manuel, 2019. "An output gap measure for the euro area: Exploiting country-level and cross-sectional data heterogeneity," European Economic Review, Elsevier, vol. 120(C).
    2. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    3. James Morley & Benjamin Wong, 2020. "Estimating and accounting for the output gap with large Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 1-18, January.
    4. Duarte, Cláudia & Maria, José R. & Sazedj, Sharmin, 2020. "Trends and cycles under changing economic conditions," Economic Modelling, Elsevier, vol. 92(C), pages 126-146.
    5. Michael O’Grady, 2019. "Estimating the Output, Inflation and Unemployment Gaps in Ireland using Bayesian Model Averaging," The Economic and Social Review, Economic and Social Studies, vol. 50(1), pages 35-76.
    6. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    7. Han, Yang & Liu, Zehao & Ma, Jun, 2020. "Growth cycles and business cycles of the Chinese economy through the lens of the unobserved components model," China Economic Review, Elsevier, vol. 63(C).
    8. Francesco Furlanetto & Kåre Hagelund & Frank Hansen & Ørjan Robstad, 2020. "Norges Bank Output Gap Estimates: Forecasting Properties, Reliability and Cyclical Sensitivity," Working Paper 2020/7, Norges Bank.
    9. Arčabić, Vladimir & Panovska, Irina & Tica, Josip, 2024. "Business cycle synchronization and asymmetry in the European Union," Economic Modelling, Elsevier, vol. 139(C).
    10. Manuel González-Astudillo & John M. Roberts, 2022. "When are trend–cycle decompositions of GDP reliable?," Empirical Economics, Springer, vol. 62(5), pages 2417-2460, May.
    11. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2015. "Trend-Cycle Decomposition Of Output And Euro Area Inflation Forecasts: A Real-Time Approach Based On Model Combination," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 363-393, March.
    12. Blonigen, Bruce A. & Piger, Jeremy & Sly, Nicholas, 2014. "Comovement in GDP trends and cycles among trading partners," Journal of International Economics, Elsevier, vol. 94(2), pages 239-247.
    13. Morley, James & Rodríguez-Palenzuela, Diego & Sun, Yiqiao & Wong, Benjamin, 2023. "Estimating the euro area output gap using multivariate information and addressing the COVID-19 pandemic," European Economic Review, Elsevier, vol. 153(C).
    14. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    15. Fernandes, Mário Correia & Dutra, Tiago Mota & Dias, José Carlos & Teixeira, João C.A., 2023. "Modelling output gaps in the Euro Area with structural breaks: The COVID-19 recession," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1046-1058.
    16. Berger, Tino & Everaert, Gerdie & Vierke, Hauke, 2016. "Testing for time variation in an unobserved components model for the U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 179-208.
    17. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    18. Andrew Evans, 2018. "Okun coefficients and participation coefficients by age and gender," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-22, December.
    19. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    20. Mr. Jiaqian Chen & Lucyna Gornicka, 2020. "Measuring Output Gap: Is It Worth Your Time?," IMF Working Papers 2020/024, International Monetary Fund.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlrv:00107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Scott St. Louis (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.