IDEAS home Printed from https://ideas.repec.org/a/fep/journl/v1y1988i2p174-183.html
   My bibliography  Save this article

Output, wages and the demand for labour : evidence from panel data

Author

Listed:
  • Paavo Peisa

    (Bank of Finland)

  • Heikki Solttila

    (Bank of Finland)

Abstract

Using a sample of small and medium sized firms, we investigate the relationship between wages and employment. Our data reveal a stable cross-section correlation between wages and productivity, consistent with the neoclassical demand for labour theOly in general and the Cobb-Douglas assumptions in particular. These results do not indicate anything about the direction of causation. A positive correlation between wages and productivity can arise from capital- labour substitution as wages change but other explanations are also plausible. Intervening variables are for example a particular concern in the analysis of panel data. In this paper, the neoclassical theOlY is tested in the generalized random effects framework put forward by Chamberlain. A series of exogeneity tests gives some support to the neoclassical notion that at the micro level, wages affect employment and productivity but not vice versa. The evidence presented is rather weak, however, and our data do flot reject a restriction to a purely static relationship. In this specification. parameter estimates are not neoclassical. The wage-elasticity estimates obtained from the neoclassical cost-minimization model are of order 0.2-0.4, which is quite reasonable. Qur results give support to the hypothesis that measurement errors have biased some of the earlier elasticity estimates from panel data towards 1.

Suggested Citation

  • Paavo Peisa & Heikki Solttila, 1988. "Output, wages and the demand for labour : evidence from panel data," Finnish Economic Papers, Finnish Economic Association, vol. 1(2), pages 174-183, Autumn.
  • Handle: RePEc:fep:journl:v:1:y:1988:i:2:p:174-183
    as

    Download full text from publisher

    File URL: http://www.taloustieteellinenyhdistys.fi/images/stories/fep/fep19882_3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martyn Andrews & Thorsten Schank & Richard Upward, 2006. "Practical fixed-effects estimation methods for the three-way error-components model," Stata Journal, StataCorp LP, vol. 6(4), pages 461-481, December.
    2. Laisney, François & Pohlmeier, Winfried & Staat, Matthias, 1991. "Estimation of labour supply functions using panel data: a survey," ZEW Discussion Papers 91-05, ZEW - Leibniz Centre for European Economic Research.
    3. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    4. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    5. Steven N. Durlauf & Yannis M. Ioannides, 2010. "Social Interactions," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 451-478, September.
    6. Gerald E. Auten & Holger Sieg & Charles T. Clotfelter, 2002. "Charitable Giving, Income, and Taxes: An Analysis of Panel Data," American Economic Review, American Economic Association, vol. 92(1), pages 371-382, March.
    7. Joel L. Horowitz & Marianthi Markatou, 1993. "Semiparametric Estimation Of Regression Models For Panel Data," Econometrics 9309001, University Library of Munich, Germany.
    8. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    9. Silvio R. Rendon, 2013. "Fixed and Random Effects in Classical and Bayesian Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(3), pages 460-476, June.
    10. Yannis M. Ioannides & Vassilis A. Hajivassiliou, 2007. "Unemployment and liquidity constraints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 479-510.
    11. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    12. Thomas J. Kniesner & James P. Ziliak, 2002. "Tax Reform and Automatic Stabilization," American Economic Review, American Economic Association, vol. 92(3), pages 590-612, June.
    13. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    14. Carl E. Walsh, 1987. "Monetary targeting and inflation: 1976-1984," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 5-16.
    15. Bill Greene with Antonio Alvarez (Univ. of Oviedo) & Carlos Arias (Univ. of Leon), 2004. "Accounting For Unobservables In Production Models: Management And Inefficiency," Econometric Society 2004 Australasian Meetings 341, Econometric Society.
    16. Leandro M. Magnusson, 2010. "Inference in limited dependent variable models robust to weak identification," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 56-79, October.
    17. Dischinger, Matthias & Riedel, Nadine, 2011. "Corporate taxes and the location of intangible assets within multinational firms," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 691-707, August.
    18. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    19. Charlier, Erwin & Melenberg, Bertrand & van Soest, Arthur, 2000. "Estimation of a censored regression panel data model using conditional moment restrictions efficiently," Journal of Econometrics, Elsevier, vol. 95(1), pages 25-56, March.
    20. Jeremy Lise & Shannon Seitz, 2011. "Consumption Inequality and Intra-household Allocations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(1), pages 328-355.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fep:journl:v:1:y:1988:i:2:p:174-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Secretary (email available below). General contact details of provider: https://edirc.repec.org/data/talouea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.