IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxivy2021i3-part2p951-966.html
   My bibliography  Save this article

Sectoral Analysis of the US Stock Market through Complex Networks

Author

Listed:
  • Dariusz Siudak

Abstract

Purpose: This study was carried out to analyze the structure of the aggregated network at the level of economic sectors and to reveal the central/peripheral sectors. Design/Methodology/Approach: The study uses the method of complex networks, with the two-step procedure employed to construct the network of economic sectors. First, the MST approach is utilized based on the cross-correlation of 496 stock price returns of the S&P500 Index. Then, the network is aggregated at the level of economic sectors. In addition, to analyze the graph, the network theory, multi-dimensional scaling (MDS), and relative importance approaches are employed. Findings: The results indicate that the sectoral network has a core/periphery structure. Based on the centrality measures, the ranking of sectors is provided. Of the 11 sectors, 3 are classified as central nodes, 4 as peripheral nodes, and the remaining 4 are classified as intermediate. In addition, the network configuration analysis demonstrates that the graph consists of two parts with a star-like structure, connected through the industrials sector. Practical Implications: An analysis of the cross-correlation network of aggregated assets at the level of economic sectors can be applied to ascertain the direction of stock price movements in the stock market. The division of sectors in the network into central and peripheral nodes has important implications for the management of an optimal portfolio of stocks. Originality/value: This study contributes to complex network theory and portfolio strategy design. A unique procedure is proposed to construct the network of economic sectors using the MST-based approach. Detection of the stock market network structure is vital for investors and regulators alike.

Suggested Citation

  • Dariusz Siudak, 2021. "Sectoral Analysis of the US Stock Market through Complex Networks," European Research Studies Journal, European Research Studies Journal, vol. 0(3 - Part ), pages 951-966.
  • Handle: RePEc:ers:journl:v:xxiv:y:2021:i:3-part2:p:951-966
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/2549/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Pozzi & T. Di Matteo & T. Aste, 2008. "Centrality And Peripherality In Filtered Graphs From Dynamical Financial Correlations," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 927-950.
    2. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    3. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets Around the Global Financial Crisis," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 195-210, February.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    6. Esmaeilpour Moghadam, Hadi & Mohammadi, Teymour & Feghhi Kashani, Mohammad & Shakeri, Abbas, 2019. "Complex networks analysis in Iran stock market: The application of centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    7. T. Di Matteo & F. Pozzi & T. Aste, 2010. "The use of dynamical networks to detect the hierarchical organization of financial market sectors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 3-11, January.
    8. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    9. Bilal Ahmed Memon & Hongxing Yao & Rabia Tahir, 2020. "General election effect on the network topology of Pakistan’s stock market: network-based study of a political event," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    10. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    11. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.
    12. Kiran Sharma & Balagopal Gopalakrishnan & Anindya S. Chakrabarti & Anirban Chakraborti, 2016. "Co-movements in financial fluctuations are anchored to economic fundamentals: A mesoscopic mapping," Papers 1612.05952, arXiv.org, revised Jan 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ers:journl:v:xxiv:y:2021:i:3b:p:951-966 is not listed on IDEAS
    2. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    3. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    4. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    5. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    6. Guo, Xiaoping & Fan, Ningyuan & Liu, Zhenchun & Wang, Jianwei, 2024. "Macro topology structure and evolution of Chinese Public Funds’ Co-holding Network," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    7. Kulkarni, Saumitra & Pharasi, Hirdesh K. & Vijayaraghavan, Sudharsan & Kumar, Sunil & Chakraborti, Anirban & Samal, Areejit, 2024. "Investigation of Indian stock markets using topological data analysis and geometry-inspired network measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    8. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    9. Jaroonchokanan, Nawee & Termsaithong, Teerasit & Suwanna, Sujin, 2022. "Dynamics of hierarchical clustering in stocks market during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Nie, Chun-Xiao & Song, Fu-Tie, 2019. "Global Rényi index of the distance matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 902-915.
    11. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    12. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    13. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    14. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    15. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    16. Wang, Dan & Huang, Wei-Qiang, 2021. "Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    17. Vidal-Tomás, David, 2021. "Transitions in the cryptocurrency market during the COVID-19 pandemic: A network analysis," Finance Research Letters, Elsevier, vol. 43(C).
    18. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Vyrost, Tomas, 2015. "Country and industry effects in CEE stock market networks: Preliminary results," MPRA Paper 65775, University Library of Munich, Germany.
    20. Bilal Ahmed Memon & Hongxing Yao & Rabia Tahir, 2020. "General election effect on the network topology of Pakistan’s stock market: network-based study of a political event," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    21. Kumar, Sudarshan & Bansal, Avijit & Chakrabarti, Anindya S., 2019. "Ripples on financial networks," IIMA Working Papers WP 2019-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.

    More about this item

    Keywords

    Stock market network; correlation-based network; economic sectors; minimum spanning tree; centrality measures.;
    All these keywords.

    JEL classification:

    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • L14 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Transactional Relationships; Contracts and Reputation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiv:y:2021:i:3-part2:p:951-966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.