IDEAS home Printed from https://ideas.repec.org/a/emx/esteco/v27y2012i1p133-167.html
   My bibliography  Save this article

Predicción de la inflación en México con modelos desagregados por componente

Author

Listed:
  • Robinson Durán

    (Universidad de Concepción)

  • Evelyn Garrido

    (Universidad de Concepción)

  • Carolina Godoy

    (Banco Central de Chile)

  • Juan de Dios Tena

    (Università di Sassari y Universidad Carlos III)

Abstract

This article is an empirical analysis on the optimal level of disaggregation by sectors and the best econometric strategy in order to forecast Mexican inflation. We compare different disaggregate modeling strategies based on: 1) univariate ARIMA models, 2) panel data methodology, 3) vector error correction models, and 4) dynamic common factor models. It is found that disaggregation by sectors is useful in order to forecast the Mexican inflation rate. Moreover, inflation forecasts based on panel data, vector correction models and dynamic factor models improves those obtained from simple extrapolative devices based on ARIMA models.

Suggested Citation

  • Robinson Durán & Evelyn Garrido & Carolina Godoy & Juan de Dios Tena, 2012. "Predicción de la inflación en México con modelos desagregados por componente," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 27(1), pages 133-167.
  • Handle: RePEc:emx:esteco:v:27:y:2012:i:1:p:133-167
    as

    Download full text from publisher

    File URL: https://estudioseconomicos.colmex.mx/index.php/economicos/article/view/93/95
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zellner, Arnold & Tobias, Justin, 1998. "A Note on Aggregation, Disaggregation and Forecasting Performance," CUDARE Working Papers 198677, University of California, Berkeley, Department of Agricultural and Resource Economics.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    3. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    4. Juan de Dios Tena & Antoni Espasa & Gabriel Pino, 2010. "Forecasting Spanish Inflation Using the Maximum Disaggregation Level by Sectors and Geographical Areas," International Regional Science Review, , vol. 33(2), pages 181-204, April.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Jeannine Bailliu & Daniel Garcés Díaz & Mark Kruger & Miguel Messmacher, 2003. "Explicación y predicción de la inflación en mercados emergentes: el caso de México," Monetaria, CEMLA, vol. 0(2), pages 129-165, abril-jun.
    7. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
    8. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    9. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    10. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    11. Ibarra-Ramírez Raúl, 2010. "Forecasting Inflation in Mexico Using Factor Models: Do Disaggregated CPI Data Improve Forecast Accuracy?," Working Papers 2010-01, Banco de México.
    12. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    13. Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
    14. Daniel Chiquiar & Antonio Noriega & Manuel Ramos-Francia, 2010. "A time-series approach to test a change in inflation persistence: the Mexican experience," Applied Economics, Taylor & Francis Journals, vol. 42(24), pages 3067-3075.
    15. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    16. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    17. Albacete, Rebeca, 2004. "Econometric modelling for short-term inflation forecasting in the EMU," DES - Working Papers. Statistics and Econometrics. WS ws034309, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    19. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    20. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    21. Juselius, Katarina, 2006. "The Cointegrated VAR Model: Methodology and Applications," OUP Catalogue, Oxford University Press, number 9780199285679.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
    2. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    3. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    4. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    5. Juan de Dios Tena & Antoni Espasa & Gabriel Pino, 2010. "Forecasting Spanish Inflation Using the Maximum Disaggregation Level by Sectors and Geographical Areas," International Regional Science Review, , vol. 33(2), pages 181-204, April.
    6. Juan de Dios TENA & Antoni ESPASA & Gabriel PINO, 2010. "Forecasting Inflation and Relative Prices in the European Regions: A Case Study," Regional and Urban Modeling 284100040, EcoMod.
    7. Pino, Gabriel, 2013. "Forecasting disaggregates by sectors and regions : the case of inflation in the euro area and Spain," DES - Working Papers. Statistics and Econometrics. WS ws130807, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    9. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    10. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    11. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    12. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    13. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    14. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    15. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    16. Francisco Dias & Maximiano Pinheiro & António Rua, 2018. "A bottom-up approach for forecasting GDP in a data-rich environment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 718-723, June.
    17. Duarte, Claudia & Rua, Antonio, 2007. "Forecasting inflation through a bottom-up approach: How bottom is bottom?," Economic Modelling, Elsevier, vol. 24(6), pages 941-953, November.
    18. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    19. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    20. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.

    More about this item

    Keywords

    forecasting Mexican inflation; vector error correction models; fixed effect models; dynamic factors;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:emx:esteco:v:27:y:2012:i:1:p:133-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ximena Varela (email available below). General contact details of provider: https://edirc.repec.org/data/cecolmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.