IDEAS home Printed from https://ideas.repec.org/a/eme/rbfpps/rbf-04-2018-0033.html
   My bibliography  Save this article

Investor attention using the Google search volume index – impact on stock returns

Author

Listed:
  • Vighneswara Swamy
  • Munusamy Dharani

Abstract

Purpose - The purpose of this paper is to investigate whether the investor attention using the Google search volume index (GSVI) can be used to forecast stock returns. The authors also find the answer to whether the “price pressure hypothesis” would hold true for the Indian stock market. Design/methodology/approach - The authors employ a more recent fully balanced panel data for the period from July 2012 to Jun 2017 (260 weeks) of observations for companies of NIFTY 50 of the National Stock Exchange in the Indian stock market. The authors are motivated by Tetlock (2007) and Bijlet al.(2016) to employ regression approach of econometric estimation. Findings - The authors find that high Google search volumes lead to positive returns. More precisely, the high Google search volumes predict positive and significant returns in the subsequent fourth and fifth weeks. The GSVI performs as an useful predictor of the direction as well as the magnitude of the excess returns. The higher quantiles of the GSVI have corresponding higher excess returns. The authors notice that the domestic investor searches are correlated with higher excess returns than the worldwide investor searches. The findings imply that the signals from the search volume data could be of help in the construction of profitable trading strategies. Originality/value - To the best of the authors knowledge, no paper has examined the relationship between Google search intensity and stock-trading behavior in the Indian stock market. The authors use a more recent data for the period from 2012 to 2017 to investigate whether search query data on company names can be used to predict weekly stock returns for individual firms. This study complements the prior studies by investigating the relationship between search intensity and stock-trading behavior in the Indian stock market.

Suggested Citation

  • Vighneswara Swamy & Munusamy Dharani, 2019. "Investor attention using the Google search volume index – impact on stock returns," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 11(1), pages 56-70, May.
  • Handle: RePEc:eme:rbfpps:rbf-04-2018-0033
    DOI: 10.1108/RBF-04-2018-0033
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RBF-04-2018-0033/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RBF-04-2018-0033/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/RBF-04-2018-0033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    2. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    3. Cheraghali, Hamid & Høydal, Hannah & Lysebo, Caroline & Molnár, Peter, 2023. "Consumer attention and company performance: Evidence from luxury companies," Finance Research Letters, Elsevier, vol. 58(PA).

    More about this item

    Keywords

    Stock returns; Predictability; Google searches; G11; G12; G14;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:rbfpps:rbf-04-2018-0033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.