IDEAS home Printed from https://ideas.repec.org/a/eme/jrfpps/jrf-06-2023-0137.html
   My bibliography  Save this article

Forecasting value-at-risk and expected shortfall in emerging market: does forecast combination help?

Author

Listed:
  • Trung Hai Le

Abstract

Purpose - This paper investigates how various strategies for combining forecasts, both simple and optimised approaches, are compared with popular individual risk models in estimating value-at-risk (VaR) and expected shortfall (ES) in emerging market at alternative risk levels. Design/methodology/approach - Using the case study of the Vietnamese stock market, the author produced one-day-ahead VaR and ES forecast from seven individual risk models and ten alternative forecast combinations. Next, the author employed a battery of backtesting procedures and alternative loss functions to evaluate the global predictive accuracy of the different methods. Finally, the author investigated the relative performance over time of VaR and ES forecasts using fluctuation test. Findings - The empirical results indicate that, although combined forecasts have reasonable predictive abilities, they are often outperformed by one individual risk model. Furthermore, the author showed that the complex combining methods with optimised weighting functions do not perform better than simple combining methods. The fluctuation test suggests that the poor performance of combined forecasts is mainly due to their inability to cope with periods of instability. Research limitations/implications - This study reveals the limitation of combining strategies in the one-day-ahead VaR and ES forecasts in emerging markets. A possible direction for further research is to investigate whether this finding holds for multi-day ahead forecasts. Moreover, the inferior performance of combined forecasts during periods of instability motivates further research on the combining strategies that take into account for potential structure breaks in the performance of individual risk models. A potential approach is to improve the individual risk models with macroeconomic variables using a mixed-data sampling approach. Originality/value - First, the authors contribute to the literature on the forecasting combinations for VaR and ES measures. Second, the author explored a wide range of alternative risk models to forecast both VaR and ES with recent data including periods of the COVID-19 pandemic. Although forecast combination strategies have been providing several good results in several fields, the literature of forecast combination in the VaR and ES context is surprisingly limited, especially for emerging market returns. To the best of the author’s knowledge, this is the first study investigating predictive power of combining methods for VaR and ES in an emerging market.

Suggested Citation

  • Trung Hai Le, 2024. "Forecasting value-at-risk and expected shortfall in emerging market: does forecast combination help?," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 25(1), pages 160-177, January.
  • Handle: RePEc:eme:jrfpps:jrf-06-2023-0137
    DOI: 10.1108/JRF-06-2023-0137
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JRF-06-2023-0137/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JRF-06-2023-0137/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/JRF-06-2023-0137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Value at risk; Expected shortfall; Forecast combination; C22; E47; G17;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jrfpps:jrf-06-2023-0137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.