Author
Listed:
- Clara M. Novoa
- Francis Mendez
Abstract
Purpose - The purpose of this paper is to present bootstrapping as an alternative statistical methodology to analyze time studies and input data for discrete‐event simulations. Bootstrapping is a non‐parametric technique to estimate the sampling distribution of a statistic by doing repeated sampling (i.e. resampling) with replacement from an original sample. This paper proposes a relatively simple implementation of bootstrap techniques to time study analysis. Design/methodology/approach - Using an inductive approach, this work selects a typical situation to conduct a time study, applies two bootstrap procedures for the statistical analysis, compares bootstrap to traditional parametric approaches, and extrapolates general advantages of bootstrapping over parametric approaches. Findings - Bootstrap produces accurate inferences when compared to those from parametric methods, and it is an alternative when the underlying parametric assumptions are not met. Research limitations/implications - Research results contribute to work measurement and simulation fields since bootstrap promises an increase in accuracy in cases where the normality assumption is violated or only small samples are available. Furthermore, this paper shows that electronic spreadsheets are appropriate tools to implement the proposed bootstrap procedures. Originality/value - In previous work, the standard procedure to analyze time studies and input data for simulations is a parametric approach. Bootstrap permits to obtain both point estimates and estimates of time distributions. Engineers and managers involved in process improvement initiatives could use bootstrap to exploit better the information from available samples.
Suggested Citation
Clara M. Novoa & Francis Mendez, 2009.
"Bootstrap methods for analyzing time studies and input data for simulations,"
International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 58(5), pages 460-479, June.
Handle:
RePEc:eme:ijppmp:v:58:y:2009:i:5:p:460-479
DOI: 10.1108/17410400910965724
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijppmp:v:58:y:2009:i:5:p:460-479. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.