Author
Listed:
- Sakshi Vishnoi
- Jinil Persis
Abstract
Purpose - Managing weeds and pests in cropland is one of the major concerns in agriculture that greatly affects the quantity and quality of the produce. While the success of preventing potential weeds and pests is not guaranteed, early detection and diagnosis help manage them effectively to ensure crops’ growth and health Design/methodology/approach - We propose a diagnostic framework for crop management with automatic weed and pest detection and identification in maize crops using residual neural networks. We train two models, one for weed detection with a labeled image dataset of maize and commonly occurring weed plants, and another for leaf disease detection using a labeled image dataset of healthy and infected maize leaves. The global and local explanations of image classification are obtained and presented Findings - Weed and disease detection and identification can be accurately performed using deep-learning neural networks. Weed detection is accurate up to 97%, and disease detection up to 95% is made on average and the results are presented. Further, using this crop management system, we can detect the presence of weeds and pests in the maize crop early, and the annual yield of the maize crop can potentially increase by 90% theoretically with suitable control actions Practical implications - The proposed diagnostic models can be further used on farms to monitor the health of maize crops. Images obtained from drones and robots can be fed to these models, which can then automatically detect and identify weed and disease attacks on maize farms. This offers early diagnosis, which enables necessary treatment and control of crops at the early stages without affecting the yield of the maize crop Social implications - The proposed crop management framework allows treatment and control of weeds and pests only in the affected regions of the farms and hence minimizes the use of harmful pesticides and herbicides and their related health effects on consumers and farmers. Originality/value - This study presents an integrated weed and disease diagnostic framework, which is scarcely reported in the literature
Suggested Citation
Sakshi Vishnoi & Jinil Persis, 2024.
"Intelligent crop management system for improving yield in maize production: evidence from India,"
International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 73(10), pages 3319-3334, May.
Handle:
RePEc:eme:ijppmp:ijppm-11-2023-0620
DOI: 10.1108/IJPPM-11-2023-0620
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijppmp:ijppm-11-2023-0620. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.