IDEAS home Printed from https://ideas.repec.org/a/eme/ijppmp/ijppm-08-2020-0427.html
   My bibliography  Save this article

A review of machine learning applications in human resource management

Author

Listed:
  • Swati Garg
  • Shuchi Sinha
  • Arpan Kumar Kar
  • Mauricio Mani

Abstract

Purpose - This paper reviews 105 Scopus-indexed articles to identify the degree, scope and purposes of machine learning (ML) adoption in the core functions of human resource management (HRM). Design/methodology/approach - A semi-systematic approach has been used in this review. It allows for a more detailed analysis of the literature which emerges from multiple disciplines and uses different methods and theoretical frameworks. Since ML research comes from multiple disciplines and consists of several methods, a semi-systematic approach to literature review was considered appropriate. Findings - The review suggests that HRM has embraced ML, albeit it is at a nascent stage and is receiving attention largely from technology-oriented researchers. ML applications are strongest in the areas of recruitment and performance management and the use of decision trees and text-mining algorithms for classification dominate all functions of HRM. For complex processes, ML applications are still at an early stage; requiring HR experts and ML specialists to work together. Originality/value - Given the current focus of organizations on digitalization, this review contributes significantly to the understanding of the current state of ML integration in HRM. Along with increasing efficiency and effectiveness of HRM functions, ML applications improve employees' experience and facilitate performance in the organizations.

Suggested Citation

  • Swati Garg & Shuchi Sinha & Arpan Kumar Kar & Mauricio Mani, 2021. "A review of machine learning applications in human resource management," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 71(5), pages 1590-1610, February.
  • Handle: RePEc:eme:ijppmp:ijppm-08-2020-0427
    DOI: 10.1108/IJPPM-08-2020-0427
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJPPM-08-2020-0427/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJPPM-08-2020-0427/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJPPM-08-2020-0427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zirar, Araz & Ali, Syed Imran & Islam, Nazrul, 2023. "Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda," Technovation, Elsevier, vol. 124(C).
    2. Azio Barani, 2021. "Innovazione tecnologica e lavoro: automazione, occupazione e impatti socio-economici," QUADERNI DI ECONOMIA DEL LAVORO, FrancoAngeli Editore, vol. 0(114), pages 51-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijppmp:ijppm-08-2020-0427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.