IDEAS home Printed from https://ideas.repec.org/a/eme/ijmpps/v36y2015i1p103-116.html
   My bibliography  Save this article

Can internet searches forecast tourism inflows?

Author

Listed:
  • Concha Artola
  • Fernando Pinto
  • Pablo de Pedraza García

Abstract

Purpose - – The purpose of this paper is to improve the forecast of tourism inflows into Spain by use of Google – indices on internet searches measuring the relative popularity of keywords associated with travelling to Spain. Design/methodology/approach - – Two models are estimated for each of the three countries with the largest tourist flows into Spain (Germany, UK and France): a conventional model, the best ARIMA model estimated by TRAMO (model 0) and a model augmented with the Google-index relating to searches made from each country (model 1). The overall performance of both models is compared. Findings - – The improvement in forecasting provided by the short-term models that include the G-indicator is quite substantial up to 2012, reducing out of sample mean square errors by 42 per cent, although their performance worsens in the following years. Research limitations/implications - – Deeper study and conceptualization of sources of error in Google trends and data quality is necessary. Originality/value - – The paper illustrates that while this new tool can be a powerful instrument for policy makers as a valuable and timely complement for traditional statistics, further research and better access to data is needed to better understand how internet consumers’ search activities translate (or not) into actual economic outcomes.

Suggested Citation

  • Concha Artola & Fernando Pinto & Pablo de Pedraza García, 2015. "Can internet searches forecast tourism inflows?," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 103-116, April.
  • Handle: RePEc:eme:ijmpps:v:36:y:2015:i:1:p:103-116
    DOI: 10.1108/IJM-12-2014-0259
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJM-12-2014-0259/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJM-12-2014-0259/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJM-12-2014-0259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costanza Catalano & Andrea Carboni & Claudio Doria, 2023. "How can Big Data improve the quality of tourism statistics? The Bank of Italy's experience in compiling the "travel" item in the Balance of Payments," Questioni di Economia e Finanza (Occasional Papers) 761, Bank of Italy, Economic Research and International Relations Area.
    2. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    3. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    4. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
    5. Paul Gift, 2020. "Moving the Needle in MMA: On the Marginal Revenue Product of UFC Fighters," Journal of Sports Economics, , vol. 21(2), pages 176-209, February.
    6. Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.
    7. A Fronzetti Colladon & B Guardabascio & R Innarella, 2021. "Using social network and semantic analysis to analyze online travel forums and forecast tourism demand," Papers 2105.07727, arXiv.org.
    8. de Pedraza, Pablo & Vollbracht, Ian, 2020. "The Semicircular Flow of the Data Economy and the Data Sharing Laffer curve," GLO Discussion Paper Series 515, Global Labor Organization (GLO).
    9. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
    10. Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
    11. Silva, Emmanuel Sirimal & Ghodsi, Zara & Ghodsi, Mansi & Heravi, Saeed & Hassani, Hossein, 2017. "Cross country relations in European tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 151-168.
    12. Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
    13. Pietro Giorgio Lovaglio & Mario Mezzanzanica & Emilio Colombo, 2020. "Comparing time series characteristics of official and web job vacancy data," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 85-98, February.
    14. F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
    15. Juan D Montoro-Pons & Manuel Cuadrado-García, 2021. "Analyzing online search patterns of music festival tourists," Tourism Economics, , vol. 27(6), pages 1276-1300, September.
    16. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    17. Ga-Ae Ryu & Aziz Nasridinov & HyungChul Rah & Kwan-Hee Yoo, 2020. "Forecasts of the Amount Purchase Pork Meat by Using Structured and Unstructured Big Data," Agriculture, MDPI, vol. 10(1), pages 1-14, January.
    18. Shenzhen Tian & Xueming Li & Jun Yang & Hui Wang & Jianke Guo, 2023. "Spatiotemporal evolution of pseudo human settlements: case study of 36 cities in the three provinces of Northeast China from 2011 to 2018," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1742-1772, February.
    19. Kevin Caves & Ted Tatos & Augustus Urschel, 2022. "Are the Lowest-Paid UFC Fighters Really Overpaid? A Comment on Gift (2019)," Journal of Sports Economics, , vol. 23(3), pages 355-365, April.
    20. Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijmpps:v:36:y:2015:i:1:p:103-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.