IDEAS home Printed from https://ideas.repec.org/a/eme/ijmpps/ijm-01-2024-0026.html
   My bibliography  Save this article

Workplace accidents, economic determinants and underreporting: an empirical analysis in Italy

Author

Listed:
  • Maria Alessandra Antonelli
  • Angelo Castaldo
  • Marco Forti
  • Alessia Marrocco
  • Andrea Salustri

Abstract

Purpose - This paper proposes an analysis of occupational accidents in Italy at the regional level. For this purpose, our panel is composed of 20 regions over the 2010–2019 time span. Design/methodology/approach - We apply different econometric estimation techniques (pooled OLS model, panel fixed and random effects models and semiparametric fixed model) using INAIL and ISTAT data. Our models investigate workplace accidents at the regional level by accounting for socioeconomic, labour market and productive system variables and controlling for possible underreporting bias. Findings - Overall results reveal the existence of a relevant under-notification phenomenon of accidents at work with respect to moderate accidents, that is higher especially for the southern regions of Italy. However, when considering as outcome variable an alternative set of more severe workplace accidents our model specification remains highly jointly statistically significant. Among our main findings, the analysis shows that worker skills (blue collar) strongly affect the regional pattern of workplace accidents, i.e. an increase of 1% of low paid employees generates about an increase of 1.8 severe workplace accidents per thousand workers. Moreover, we provide evidence that the size of the firm is inversely related to the occupational accident rates. Finally, our results highlight a nonlinear relationship between GDP and occupational accidents for the Italian regional context, confirmed by the high statistical significance of the quadratic term in all the estimated linear models and by the semi-parametric analysis. Originality/value - A first element of originality of our study consists of investigating the macro determinants of occupation accidents at a regional Italian level. Second, the empirical literature (Boone and Van Ours, 2006) highlights the possible bias of underreporting behaviours on nonfatal accidents in contrast to fatal accidents that are always reported. From this perspective, we have identified a few analyses (namely, Booneet al., 2011) considering different accident sets characterised by different severity degrees. Thus, this paper contributes to the literature considering five alternative subsets of accidents stratified by degree of severity (i.e. moderate, severe, moderate plus severe, severe plus fatal and total accident rates) to test for possible underreporting bias affecting our econometric model.

Suggested Citation

  • Maria Alessandra Antonelli & Angelo Castaldo & Marco Forti & Alessia Marrocco & Andrea Salustri, 2024. "Workplace accidents, economic determinants and underreporting: an empirical analysis in Italy," International Journal of Manpower, Emerald Group Publishing Limited, vol. 45(8), pages 1555-1572, June.
  • Handle: RePEc:eme:ijmpps:ijm-01-2024-0026
    DOI: 10.1108/IJM-01-2024-0026
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJM-01-2024-0026/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJM-01-2024-0026/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJM-01-2024-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Occupational accidents; Underreporting; Business cycle; Productive-system characteristics; Semiparametric fixed effects model; Italy; J28; J81; I18; I31;
    All these keywords.

    JEL classification:

    • J28 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Safety; Job Satisfaction; Related Public Policy
    • J81 - Labor and Demographic Economics - - Labor Standards - - - Working Conditions
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijmpps:ijm-01-2024-0026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.