IDEAS home Printed from https://ideas.repec.org/a/eme/ajbpps/v24y2009i2p41-52.html
   My bibliography  Save this article

Spyware and Adware: How Do Internet Users Defend Themselves?

Author

Listed:
  • Rajendran Sriramachandramurthy
  • Siva K. Balasubramanian
  • Monica Alexandra Hodis

Abstract

Keywords: Spyware, Adware, Internet privacy, Online safety, Internet threats

Suggested Citation

  • Rajendran Sriramachandramurthy & Siva K. Balasubramanian & Monica Alexandra Hodis, 2009. "Spyware and Adware: How Do Internet Users Defend Themselves?," American Journal of Business, Emerald Group Publishing Limited, vol. 24(2), pages 41-52, October.
  • Handle: RePEc:eme:ajbpps:v:24:y:2009:i:2:p:41-52
    DOI: 10.1108/19355181200900010
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/19355181200900010/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/19355181200900010/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/19355181200900010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maia Berkane & P. M. Bentler, 1988. "Estimation of Contamination Parameters and Identification of Outliers in Multivariate Data," Sociological Methods & Research, , vol. 17(1), pages 55-64, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    2. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    3. Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ajbpps:v:24:y:2009:i:2:p:41-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.