IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v79y2019icp103-114.html
   My bibliography  Save this article

Cyber risk and insurance for transportation infrastructure

Author

Listed:
  • Tonn, Gina
  • Kesan, Jay P.
  • Zhang, Linfeng
  • Czajkowski, Jeffrey

Abstract

While advances in information technology and interconnectivity have improved efficiency for transportation infrastructure, they have also created higher risk associated with cyber systems. The objective of this study is to inform transportation policy and management in the U.S. by identifying barriers to a robust cyber insurance market and improved cyber resilience for transportation infrastructure. This is accomplished through a mixed-methods approach involving analysis of U.S. cyber incident data for transportation systems and a series of interviews with transportation infrastructure managers and insurers. Contributions include new insights into the nature of cyber risk for transportation infrastructure and recommendations on research needs to improve cyber risk management and insurance. Results indicate that the annual number of transport-related companies affected by cyber incidents and the associated costs are on the rise. The most common incidents involve data breaches, while incidents involving privacy violation have the highest average loss per incident. Cyber risk assessment, mitigation and security measures, and insurance are being implemented to varying degrees in transportation infrastructure systems but are generally inadequate. Infrastructure managers do not currently have the tools to rigorously assess and manage cyber risk. Limited data and models also inhibit the accurate modeling of cyber risk for insurance purposes. Even after improved tools and modeling are developed, insurance purchase can be an important risk management strategy to allow transportation infrastructure systems to recover from cyber incidents.

Suggested Citation

  • Tonn, Gina & Kesan, Jay P. & Zhang, Linfeng & Czajkowski, Jeffrey, 2019. "Cyber risk and insurance for transportation infrastructure," Transport Policy, Elsevier, vol. 79(C), pages 103-114.
  • Handle: RePEc:eee:trapol:v:79:y:2019:i:c:p:103-114
    DOI: 10.1016/j.tranpol.2019.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X18307248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2019.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monika Blišťanová & Peter Koščák & Michaela Tirpáková & Magdaléna Ondicová, 2023. "A Cross-Comparative Analysis of Transportation Safety Research," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    2. Khan, Shah Khalid & Shiwakoti, Nirajan & Stasinopoulos, Peter & Warren, Matthew, 2023. "Cybersecurity regulatory challenges for connected and automated vehicles – State-of-the-art and future directions," Transport Policy, Elsevier, vol. 143(C), pages 58-71.
    3. Tonn, Gina & Reilly, Allison & Czajkowski, Jeffrey & Ghaedi, Hamed & Kunreuther, Howard, 2021. "U.S. transportation infrastructure resilience: Influences of insurance, incentives, and public assistance," Transport Policy, Elsevier, vol. 100(C), pages 108-119.
    4. Ulrik Franke, 0. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-25.
    5. Ulrik Franke, 2020. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 760-784, October.
    6. Dirk Wrede & Tino Stegen & Johann-Matthias Schulenburg, 2020. "Affirmative and silent cyber coverage in traditional insurance policies: Qualitative content analysis of selected insurance products from the German insurance market," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 657-689, October.
    7. Khan, Shah Khalid & Shiwakoti, Nirajan & Stasinopoulos, Peter & Chen, Yilun & Warren, Matthew, 2024. "The impact of perceived cyber-risks on automated vehicle acceptance: Insights from a survey of participants from the United States, the United Kingdom, New Zealand, and Australia," Transport Policy, Elsevier, vol. 152(C), pages 87-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:79:y:2019:i:c:p:103-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.