IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v80y2015icp74-94.html
   My bibliography  Save this article

A multi-objective healthcare inventory routing problem; a fuzzy possibilistic approach

Author

Listed:
  • Niakan, Farzad
  • Rahimi, Mohammad

Abstract

This paper presents a new multi-objective mathematical model to address a Healthcare Inventory Routing Problem (HIRP) for medicinal drug distribution to healthcare facilities. The first part of objective function minimizes total inventory and transportation costs, while satisfaction is maximized by minimizing forecast error which caused by product shortage and the amount of expired drugs; Greenhouse Gas (GHG) emissions are also minimized. A demand forecast approach has been integrated into the mathematical model to decrease drug shortage risk. A hybridized possibilistic method is applied to cope with uncertainty and an interactive fuzzy approach is considered to solve an auxiliary crisp multi-objective model and find optimized solutions.

Suggested Citation

  • Niakan, Farzad & Rahimi, Mohammad, 2015. "A multi-objective healthcare inventory routing problem; a fuzzy possibilistic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 74-94.
  • Handle: RePEc:eee:transe:v:80:y:2015:i:c:p:74-94
    DOI: 10.1016/j.tre.2015.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655451500109X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2015.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arenas Parra, M. & Bilbao Terol, A. & Perez Gladish, B. & Rodriguez Uria, M. V., 2005. "Solving a multiobjective possibilistic problem through compromise programming," European Journal of Operational Research, Elsevier, vol. 164(3), pages 748-759, August.
    2. Agra, Agostinho & Christiansen, Marielle & Delgado, Alexandrino & Simonetti, Luidi, 2014. "Hybrid heuristics for a short sea inventory routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 924-935.
    3. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    4. Cruz, Jose M. & Wakolbinger, Tina, 2008. "Multiperiod effects of corporate social responsibility on supply chain networks, transaction costs, emissions, and risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 61-74, November.
    5. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    6. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    7. Li, Kunpeng & Chen, Bin & Sivakumar, Appa Iyer & Wu, Yong, 2014. "An inventory–routing problem with the objective of travel time minimization," European Journal of Operational Research, Elsevier, vol. 236(3), pages 936-945.
    8. Li, Jing-An & Wu, Yue & Lai, Kin Keung & Liu, Ke, 2008. "Replenishment routing problems between a single supplier and multiple retailers with direct delivery," European Journal of Operational Research, Elsevier, vol. 190(2), pages 412-420, October.
    9. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    10. Moin, N.H. & Salhi, S. & Aziz, N.A.B., 2011. "An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem," International Journal of Production Economics, Elsevier, vol. 133(1), pages 334-343, September.
    11. S. Anily & A. Federgruen, 1990. "One Warehouse Multiple Retailer Systems with Vehicle Routing Costs," Management Science, INFORMS, vol. 36(1), pages 92-114, January.
    12. Ahmadi Javid, Amir & Azad, Nader, 2010. "Incorporating location, routing and inventory decisions in supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 582-597, September.
    13. Patrick Jaillet & Jonathan F. Bard & Liu Huang & Moshe Dror, 2002. "Delivery Cost Approximations for Inventory Routing Problems in a Rolling Horizon Framework," Transportation Science, INFORMS, vol. 36(3), pages 292-300, August.
    14. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    15. Awi Federgruen & Paul Zipkin, 1984. "A Combined Vehicle Routing and Inventory Allocation Problem," Operations Research, INFORMS, vol. 32(5), pages 1019-1037, October.
    16. Zhao, Qiu hong & Chen, Shuang & Leung, Stephen C.H. & Lai, K.K., 2010. "Integration of inventory and transportation decisions in a logistics system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 913-925, November.
    17. Huang, Shan-Huen & Lin, Pei-Chun, 2010. "A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 598-611, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    2. Mehmet Onur Olgun & Erdal Aydemir, 2021. "A new cooperative depot sharing approach for inventory routing problem," Annals of Operations Research, Springer, vol. 307(1), pages 417-441, December.
    3. Moon, Ilkyeong & Feng, Xuehao, 2017. "Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 78-97.
    4. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    5. Li, Ming & Wang, Zheng & Chan, Felix T.S., 2016. "A robust inventory routing policy under inventory inaccuracy and replenishment lead-time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 290-305.
    6. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    7. Pourya Pourhejazy & Oh Kyoung Kwon, 2016. "The New Generation of Operations Research Methods in Supply Chain Optimization: A Review," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    8. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    9. Rahimi, Mohammad & Baboli, Armand & Rekik, Yacine, 2017. "Multi-objective inventory routing problem: A stochastic model to consider profit, service level and green criteria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 59-83.
    10. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    11. Micheli, Guido J.L. & Mantella, Fabio, 2018. "Modelling an environmentally-extended inventory routing problem with demand uncertainty and a heterogeneous fleet under carbon control policies," International Journal of Production Economics, Elsevier, vol. 204(C), pages 316-327.
    12. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    13. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    14. Amir Saeed Nikkhah Qamsari & Seyyed-Mahdi Hosseini-Motlagh & Seyed Farid Ghannadpour, 2022. "A column generation approach for an inventory routing problem with fuzzy time windows," Operational Research, Springer, vol. 22(2), pages 1157-1207, April.
    15. Mosca, Alyssa & Vidyarthi, Navneet & Satir, Ahmet, 2019. "Integrated transportation – inventory models: A review," Operations Research Perspectives, Elsevier, vol. 6(C).
    16. Saijun Shao & Kin Keung Lai & Biyun Ge, 2023. "A multi-period inventory routing problem with procurement decisions: a case in China," Annals of Operations Research, Springer, vol. 324(1), pages 1527-1555, May.
    17. Lobo, Maria Stella de Castro & Estellita Lins, Marcos Pereira & Rodrigues, Henrique de Castro & Soares, Gabriel Martins, 2022. "Planning feasible and efficient operational scenarios for a university hospital through multimethodology," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    18. Liu, Wenqian & Ke, Ginger Y. & Chen, Jian & Zhang, Lianmin, 2020. "Scheduling the distribution of blood products: A vendor-managed inventory routing approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    19. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2016. "Min–Max exact and heuristic policies for a two-echelon supply chain with inventory and transportation procurement decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 57-70.
    20. Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
    21. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    22. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    2. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    3. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    4. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    5. Hadi Jahangir & Mohammad Mohammadi & Seyed Hamid Reza Pasandideh & Neda Zendehdel Nobari, 2019. "Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2327-2353, August.
    6. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    7. Mosca, Alyssa & Vidyarthi, Navneet & Satir, Ahmet, 2019. "Integrated transportation – inventory models: A review," Operations Research Perspectives, Elsevier, vol. 6(C).
    8. Fokkema, Jan Eise & Land, Martin J. & Coelho, Leandro C. & Wortmann, Hans & Huitema, George B., 2020. "A continuous-time supply-driven inventory-constrained routing problem," Omega, Elsevier, vol. 92(C).
    9. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    10. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    11. Mirzapour Al-e-hashem, S.M.J. & Rekik, Yacine, 2014. "Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach," International Journal of Production Economics, Elsevier, vol. 157(C), pages 80-88.
    12. Cheng, Chun & Yang, Peng & Qi, Mingyao & Rousseau, Louis-Martin, 2017. "Modeling a green inventory routing problem with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 97-112.
    13. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    14. Chiu, Agustín & Angulo, Gustavo & Larrain, Homero, 2024. "Optimizing the long-term costs of an Inventory Routing Problem using linear relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    15. Divsalar, Ali & Vansteenwegen, Pieter, 2016. "A two-phase algorithm for the cyclic inventory routing problemAuthor-Name: Chitsaz, Masoud," European Journal of Operational Research, Elsevier, vol. 254(2), pages 410-426.
    16. Zhang, Ying & Qi, Mingyao & Miao, Lixin & Liu, Erchao, 2014. "Hybrid metaheuristic solutions to inventory location routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 305-323.
    17. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    18. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    19. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    20. Pan, Zhendong & Tang, Jiafu & Fung, Richard Y.K., 2009. "Synchronization of inventory and transportation under flexible vehicle constraint: A heuristics approach using sliding windows and hierarchical tree structure," European Journal of Operational Research, Elsevier, vol. 192(3), pages 824-836, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:80:y:2015:i:c:p:74-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.