IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v189y2024ics1366554524002357.html
   My bibliography  Save this article

Saving energy with eco-friendly routing of an electric vehicle fleet

Author

Listed:
  • Woo, Soomin
  • Choi, Eric Yongkeun
  • Moura, Scott J.
  • Borrelli, Francesco

Abstract

This paper fills the research gap between theoretical vehicle routing algorithms and practical solutions in the field. We use commercially developed prediction algorithms for the energy consumption of vehicles and solve for the energy-efficient routing and charging strategies of an electric vehicle fleet to visit a given set of destinations using meta-heuristics. Then we validate the energy saving performance of the efficient routing solutions with real-world vehicle measurements in a real traffic network. We also conduct a sensitivity analysis via simulation to explore some critical factors in reducing energy consumption. Current literature on vehicle routing problems is limited because they do not validate the energy consumption or the travel time of the solution in the field. This opens questions regarding the routing performance, which faces significant uncertainty from a real traffic network. Also, the travel costs in the network, such as energy consumption and travel time, have been predicted with simple or physics-based models in the theoretical studies, which are limited in capturing the complexity of a real traffic network. Our contributions are as follows. First, we develop a comprehensive framework for routing and charging an electric fleet, integrated with a high-precision prediction algorithm of energy and travel time based on learning a large driving data set. Second, we validate our routing performance in the San Francisco East Bay area with an energy consumption reduction of up to 31% compared to a baseline. Third, we conduct a sensitivity analysis via simulation on some critical constraints of vehicle routing. We observe that relaxing the limitation on operation duration and battery size on the vehicle fleet can expand the solution’s feasible space and reduce the optimal energy consumption; however, the benefits diminish as constraints are relaxed to a certain point.

Suggested Citation

  • Woo, Soomin & Choi, Eric Yongkeun & Moura, Scott J. & Borrelli, Francesco, 2024. "Saving energy with eco-friendly routing of an electric vehicle fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002357
    DOI: 10.1016/j.tre.2024.103644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wei & Liu, Jiahui & Wang, Kai & Wang, Liang, 2024. "Routing and charging optimization for electric bus operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    2. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    3. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    4. Hiermann, Gerhard & Hartl, Richard F. & Puchinger, Jakob & Vidal, Thibaut, 2019. "Routing a mix of conventional, plug-in hybrid, and electric vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 235-248.
    5. Zhang, Li & Liu, Zhongshan & Yu, Bin & Long, Jiancheng, 2024. "A ridesharing routing problem for airport riders with electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    6. Macrina, Giusy & Laporte, Gilbert & Guerriero, Francesca & Di Puglia Pugliese, Luigi, 2019. "An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows," European Journal of Operational Research, Elsevier, vol. 276(3), pages 971-982.
    7. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    5. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    6. Bao, Dan-Wen & Zhou, Jia-Yi & Zhang, Zi-Qian & Chen, Zhuo & Kang, Di, 2023. "Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification," Journal of Air Transport Management, Elsevier, vol. 108(C).
    7. Laporte, Gilbert, 2024. "Fifty years of operational research: 1972–2022," European Journal of Operational Research, Elsevier, vol. 319(2), pages 347-360.
    8. Ren, Xuan & Froger, Aurélien & Jabali, Ola & Liang, Gongqian, 2024. "A competitive heuristic algorithm for vehicle routing problems with drones," European Journal of Operational Research, Elsevier, vol. 318(2), pages 469-485.
    9. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    10. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    11. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    12. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    14. Amine Masmoudi, M. & Baldacci, Roberto & Mancini, Simona & Kuo, Yong-Hong, 2024. "Multi-compartment waste collection vehicle routing problem with bin washer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    15. Wang, Ruiting & Keyantuo, Patrick & Zeng, Teng & Sandoval, Jairo & Vishwanath, Aashrith & Borhan, Hoseinali & Moura, Scott, 2024. "Robust routing for a mixed fleet of heavy-duty trucks with pickup and delivery under energy consumption uncertainty," Applied Energy, Elsevier, vol. 368(C).
    16. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    17. Nolz, Pamela C. & Absi, Nabil & Feillet, Dominique & Seragiotto, Clóvis, 2022. "The consistent electric-Vehicle routing problem with backhauls and charging management," European Journal of Operational Research, Elsevier, vol. 302(2), pages 700-716.
    18. Amine Masmoudi, M. & Coelho, Leandro C. & Demir, Emrah, 2022. "Plug-in hybrid electric refuse vehicle routing problem for waste collection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    19. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
    20. Wang, Weiquan & Zhao, Jingyi, 2023. "Partial linear recharging strategy for the electric fleet size and mix vehicle routing problem with time windows and recharging stations," European Journal of Operational Research, Elsevier, vol. 308(2), pages 929-948.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.