IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v183y2024ics1366554524000395.html
   My bibliography  Save this article

Traffic emergency vehicle deployment and dispatch under uncertainty

Author

Listed:
  • Zhen, Lu
  • Wu, Jingwen
  • Chen, Fengli
  • Wang, Shuaian

Abstract

To manage traffic emergencies, cities require multiple types of traffic rescue vehicles, which need to be dispatched from various rescue stations dispersed throughout the city. A reasonable way of deploying the rescue vehicles must be determined given that the times and locations at which the traffic emergencies occur are uncertain. In this paper, we propose a two-stage stochastic programming approach to deploying multiple types of emergency vehicles in response to traffic accidents in the context of uncertainty. The first stage of the proposed model concerns decisions on the quantities of the different types of vehicles to be stocked at each rescue station. In the second stage, when the locations and accident rescue demands are realized in each scenario, the decision-making involves dispatch of the emergency vehicles to the traffic accidents. To solve the proposed model, we suggest a variable neighborhood search method. Using the road network of Jiading District, Shanghai, as an example, we perform numerical experiments to investigate the efficiency of the proposed method and the model validity. Some managerial implications are also outlined in the sensitivity analysis.

Suggested Citation

  • Zhen, Lu & Wu, Jingwen & Chen, Fengli & Wang, Shuaian, 2024. "Traffic emergency vehicle deployment and dispatch under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000395
    DOI: 10.1016/j.tre.2024.103449
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524000395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
    2. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    3. Matthew J Henchey & Rajan Batta & Alan Blatt & Marie Flanigan & Kevin Majka, 2015. "A study of situationally aware routing for emergency responders," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 570-578, April.
    4. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Sarah Dunnett & Johanna Leigh & Lisa Jackson, 2019. "Optimising police dispatch for incident response in real time," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(2), pages 269-279, February.
    6. Kaan Ozbay & Cem Iyigun & Melike Baykal-Gursoy & Weihua Xiao, 2013. "Probabilistic programming models for traffic incident management operations planning," Annals of Operations Research, Springer, vol. 203(1), pages 389-406, March.
    7. Hossein Hashemi Doulabi & Gilles Pesant & Louis-Martin Rousseau, 2020. "Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare," Transportation Science, INFORMS, vol. 54(4), pages 1053-1072, July.
    8. Guilherme F. Coelho & Luiz R. Pinto, 2018. "Kriging-based simulation optimization: An emergency medical system application," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(12), pages 2006-2020, December.
    9. Pal, Raktim & Bose, Indranil, 2009. "An optimization based approach for deployment of roadway incident response vehicles with reliability constraints," European Journal of Operational Research, Elsevier, vol. 198(2), pages 452-463, October.
    10. Ibrahim Çapar & Sharif H Melouk & Burcu B Keskin, 2017. "Alternative metrics to measure EMS system performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 792-808, July.
    11. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina Baltar & Victor Abreu & Glaydston Ribeiro & Laura Bahiense, 2021. "Multi-objective model for the problem of locating tows for incident servicing on expressways," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 58-77, April.
    2. Wang, Wei & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2022. "EMS location-allocation problem under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    3. Nelas, José & Dias, Joana, 2021. "Locating emergency vehicles: Modelling the substitutability of resources and the impact of delays in the arrival of assistance," Operations Research Perspectives, Elsevier, vol. 8(C).
    4. Yan Li & Xiao Xu & Fuyu Wang, 2023. "Research on Home Health Care Scheduling Considering Synchronous Access of Caregivers and Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    5. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    6. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    7. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    8. Soumendra Nath Sanyal & Izabela Nielsen & Subrata Saha, 2020. "Multi-Objective Human Resource Allocation Approach for Sustainable Traffic Management," IJERPH, MDPI, vol. 17(7), pages 1-16, April.
    9. Lee, Yu-Ching & Chen, Yu-Shih & Chen, Albert Y., 2022. "Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 1-23.
    10. Kucukyazici, Beste & Zhang, Yue & Ardestani-Jaafari, Amir & Song, Lijie, 2020. "Incorporating patient preferences in the design and operation of cancer screening facility networks," European Journal of Operational Research, Elsevier, vol. 287(2), pages 616-632.
    11. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    12. Shivam Gupta & Sachin Modgil & Ajay Kumar & Uthayasankar Sivarajah & Zahir Irani, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," Post-Print hal-04325638, HAL.
    13. David Payares-Garcia & Javier Platero & Jorge Mateu, 2023. "A Dynamic Spatio-Temporal Stochastic Modeling Approach of Emergency Calls in an Urban Context," Mathematics, MDPI, vol. 11(4), pages 1-28, February.
    14. Kaan Ozbay & Cem Iyigun & Melike Baykal-Gursoy & Weihua Xiao, 2013. "Probabilistic programming models for traffic incident management operations planning," Annals of Operations Research, Springer, vol. 203(1), pages 389-406, March.
    15. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    16. Soheyl Khalilpourazari & Saman Khalilpourazary & Aybike Özyüksel Çiftçioğlu & Gerhard-Wilhelm Weber, 2021. "Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1621-1647, August.
    17. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    18. Jenkins, Phillip R. & Lunday, Brian J. & Robbins, Matthew J., 2020. "Robust, multi-objective optimization for the military medical evacuation location-allocation problem," Omega, Elsevier, vol. 97(C).
    19. Schlicher, Loe & Lurkin, Virginie, 2024. "Fighting pickpocketing using a choice-based resource allocation model," European Journal of Operational Research, Elsevier, vol. 315(2), pages 580-595.
    20. LaBerge, Alyssa & Mason, Makayla & Sanders, Kaelyn, 2022. "Police dispatch times: The effects of neighborhood structural disadvantage," Journal of Criminal Justice, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.