IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v158y2022ics1366554522000217.html
   My bibliography  Save this article

Conflict-free scheduling of large-scale multi-load AGVs in material transportation network

Author

Listed:
  • Hu, Yue
  • Yang, Hongbing
  • Huang, Yi

Abstract

The process of scheduling an automated guided vehicle (AGV) includes task scheduling, path planning, and traffic control management. The conflict-free scheduling of large-scale multi-load AGVs is a challenging problem in manufacturing logistics and transportation. To solve the problem of scheduling such AGVs in a network logistics system, this study proposes a method of task allocation based on adjacency combination and the shortest path principle. Three priority rules for the mobility of AGVs between nodes are designed, and a transportation strategy that combines single and two-way paths is proposed to reduce computational complexity. By combining with Dijkstra’s method, the authors develop a method to prevent deadlocks and collisions between multiple AGVs based on a timetable of reservations that hierarchically handles conflicts among nodes in multiple stages. Such constraints as AGV congestion or deadlock weaken the effectiveness of the shortest distance rule-based solution. Based on the above, a heuristic search method based on variable neighborhood search is further proposed to optimize the problem of multi-AGV task assignment, and a corresponding theorem is given to avoid the generation of unfeasible solutions by the neighborhood operators and improve the efficiency of the solution. The results of experiments show that the proposed method can adequately solve the problem of scheduling multiple AGVs in a large and dense network.

Suggested Citation

  • Hu, Yue & Yang, Hongbing & Huang, Yi, 2022. "Conflict-free scheduling of large-scale multi-load AGVs in material transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:transe:v:158:y:2022:i:c:s1366554522000217
    DOI: 10.1016/j.tre.2022.102623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522000217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Chenhao & Lee, Byung Kwon & Li, Haobin, 2020. "Integrated optimization on yard crane scheduling and vehicle positioning at container yards," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    2. Polten, Lukas & Emde, Simon, 2021. "Scheduling automated guided vehicles in very narrow aisle warehouses," Omega, Elsevier, vol. 99(C).
    3. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    5. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    6. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    7. Chengkuan Zeng & Jiafu Tang & Zhi-Ping Fan, 2019. "Auction-based cooperation mechanism for cell part scheduling with transportation capacity constraint," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3831-3846, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongfei Zhang & Ting Qu & Kuo Zhao & Kai Zhang & Yongheng Zhang & Lei Liu & Jun Wang & George Q. Huang, 2023. "Optimization Model and Strategy for Dynamic Material Distribution Scheduling Based on Digital Twin: A Step towards Sustainable Manufacturing," Sustainability, MDPI, vol. 15(23), pages 1-29, December.
    2. Xing, Zheng & Liu, Haitao & Wang, Tingsong & Chew, Ek Peng & Lee, Loo Hay & Tan, Kok Choon, 2023. "Integrated automated guided vehicle dispatching and equipment scheduling with speed optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    2. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    4. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "A column generation driven heuristic for order-scheduling and rack-sequencing in robotic mobile fulfillment systems," Omega, Elsevier, vol. 120(C).
    5. Li, Kunpeng & Liu, Tengbo & Ram Kumar, P.N. & Han, Xuefang, 2024. "A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    6. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    7. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    8. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    9. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    10. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    12. Weikang Fang & Zailin Guan & Peiyue Su & Dan Luo & Linshan Ding & Lei Yue, 2022. "Multi-Objective Material Logistics Planning with Discrete Split Deliveries Using a Hybrid NSGA-II Algorithm," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    13. Cui, Yibing & Hu, Wei & Rahmani, Ahmed, 2023. "Fractional-order artificial bee colony algorithm with application in robot path planning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 47-64.
    14. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    15. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    16. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    17. Lam, H.Y. & Ho, G.T.S. & Mo, Daniel Y. & Tang, Valerie, 2023. "Responsive pick face replenishment strategy for stock allocation to fulfil e-commerce order," International Journal of Production Economics, Elsevier, vol. 264(C).
    18. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    19. Kumar, Suryakant & Sheu, Jiuh-Biing & Kundu, Tanmoy, 2023. "Planning a parts-to-picker order picking system with consideration of the impact of perceived workload," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    20. Lihle N. Tikwayo & Tebello N. D. Mathaba, 2023. "Applications of Industry 4.0 Technologies in Warehouse Management: A Systematic Literature Review," Logistics, MDPI, vol. 7(2), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:158:y:2022:i:c:s1366554522000217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.