IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v142y2020ics1366554520307006.html
   My bibliography  Save this article

Optimization and analysis of a robot-assisted last mile delivery system

Author

Listed:
  • Simoni, Michele D.
  • Kutanoglu, Erhan
  • Claudel, Christian G.

Abstract

The last mile of freight distribution is a critical part of the supply chain because of its significant costs and customers’ increasing expectations from e-commerce and same-day delivery services. Automated technologies in freight transportation represent an opportunity to develop more efficient systems characterized by the integration of different and complementary modes. In this study, we focus on the possibility of implementing an integrated truck-robot system for the last-mile delivery. This typology of problem shares similarities with truck-drone problems, although robots are characterized by much slower speeds and can perform several consecutive deliveries. Based on these particular features, a heuristic that efficiently identifies solutions based on initial truck tours and corresponding joint robot operations is presented. This solution approach leverages a special version of the “Weighted Interval Scheduling Problem,” which allows for a very efficient Dynamic Programming solution. The developed solution approach is adopted to analyze the influence on efficiency of different features concerning the robot’s design and operation, and the surrounding environment. The results show that robot-assisted last-mile delivery systems are quite efficient if robots are employed in heavily congested areas and appropriately retrofitted to accommodate several compartments in the robot’s storage.

Suggested Citation

  • Simoni, Michele D. & Kutanoglu, Erhan & Claudel, Christian G., 2020. "Optimization and analysis of a robot-assisted last mile delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:transe:v:142:y:2020:i:c:s1366554520307006
    DOI: 10.1016/j.tre.2020.102049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520307006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    2. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    3. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126189, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    5. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    6. Villegas, Juan G. & Prins, Christian & Prodhon, Caroline & Medaglia, Andrés L. & Velasco, Nubia, 2013. "A matheuristic for the truck and trailer routing problem," European Journal of Operational Research, Elsevier, vol. 230(2), pages 231-244.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    2. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    3. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    4. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    5. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    6. Michael Dienstknecht & Nils Boysen & Dirk Briskorn, 2022. "The traveling salesman problem with drone resupply," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1045-1086, December.
    7. Coindreau, Marc-Antoine & Gallay, Olivier & Zufferey, Nicolas, 2019. "Vehicle routing with transportable resources: Using carpooling and walking for on-site services," European Journal of Operational Research, Elsevier, vol. 279(3), pages 996-1010.
    8. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    9. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    10. Alfandari, Laurent & Ljubić, Ivana & De Melo da Silva, Marcos, 2022. "A tailored Benders decomposition approach for last-mile delivery with autonomous robots," European Journal of Operational Research, Elsevier, vol. 299(2), pages 510-525.
    11. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    13. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    14. Wang, Kai & Pesch, Erwin & Kress, Dominik & Fridman, Ilia & Boysen, Nils, 2022. "The Piggyback Transportation Problem: Transporting drones launched from a flying warehouse," European Journal of Operational Research, Elsevier, vol. 296(2), pages 504-519.
    15. Chen, Cheng & Demir, Emrah & Huang, Yuan & Qiu, Rongzu, 2021. "The adoption of self-driving delivery robots in last mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    16. Roberto Roberti & Mario Ruthmair, 2021. "Exact Methods for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 55(2), pages 315-335, March.
    17. Wang, Xin & Huang, George Q., 2021. "When and how to share first-mile parcel collection service," European Journal of Operational Research, Elsevier, vol. 288(1), pages 153-169.
    18. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    19. Büyüközkan, Gülçin & Ilıcak, Öykü, 2022. "Smart urban logistics: Literature review and future directions," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    20. Chen, Cheng & Demir, Emrah & Huang, Yuan, 2021. "An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1164-1180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:142:y:2020:i:c:s1366554520307006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.