IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v131y2019icp308-328.html
   My bibliography  Save this article

Hinterland freight transportation replanning model under the framework of synchromodality

Author

Listed:
  • Qu, Wenhua
  • Rezaei, Jafar
  • Maknoon, Yousef
  • Tavasszy, Lóránt

Abstract

Hinterland freight transportation is managed according to a pre-designed schedule. In daily operations, unexpected uncertainties cause deviation from the original plan. Thus replanning is needed to deal with the perturbations and complete the transportation tasks. This paper proposes a mixed-integer programming model to re-plan hinterland freight transportation, based on the framework of synchromodality. It is a holistic resolution of shipment flow rerouting, consequence transshipment organization in the intermediate terminals, and corresponding service rescheduling. The replanning benefits from a high operational flexibility and coordination via a split of shipment and aligning the departure time of service flows with the shipment flows.

Suggested Citation

  • Qu, Wenhua & Rezaei, Jafar & Maknoon, Yousef & Tavasszy, Lóránt, 2019. "Hinterland freight transportation replanning model under the framework of synchromodality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 308-328.
  • Handle: RePEc:eee:transe:v:131:y:2019:i:c:p:308-328
    DOI: 10.1016/j.tre.2019.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554519301917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guido Perboli & Stefano Musso & Mariangela Rosano & Roberto Tadei & Moritz Godel, 2017. "Synchro-Modality and Slow Steaming: New Business Perspectives in Freight Transportation," Sustainability, MDPI, vol. 9(10), pages 1-24, October.
    2. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    3. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    4. J Andersen & M Christiansen, 2009. "Designing new European rail freight services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 348-360, March.
    5. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    6. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    7. Riccardo Giusti & Chiara Iorfida & Yuanyuan Li & Daniele Manerba & Stefano Musso & Guido Perboli & Roberto Tadei & Shuai Yuan, 2019. "Sustainable and De-Stressed International Supply-Chains Through the SYNCHRO-NET Approach," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    8. Li, Le & Negenborn, Rudy R. & De Schutter, Bart, 2017. "Distributed model predictive control for cooperative synchromodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 240-260.
    9. Bart van Riessen & Rudy R Negenborn & Gabriel Lodewijks & Rommert Dekker, 2015. "Impact and relevance of transit disturbances on planning in intermodal container networks using disturbance cost analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 17(4), pages 440-463, December.
    10. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    11. List, George F. & Wood, Bryan & Nozick, Linda K. & Turnquist, Mark A. & Jones, Dean A. & Kjeldgaard, Edwin A. & Lawton, Craig R., 2003. "Robust optimization for fleet planning under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 209-227, May.
    12. Bai, Ruibin & Wallace, Stein W. & Li, Jingpeng & Chong, Alain Yee-Loong, 2014. "Stochastic service network design with rerouting," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 50-65.
    13. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    14. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    15. Francesco Corman & Francesco Viti & Rudy R. Negenborn, 2017. "Equilibrium models in multimodal container transport systems," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 125-153, March.
    16. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crainic, Teodor Gabriel & Perboli, Guido & Rei, Walter & Rosano, Mariangela & Lerma, Veronica, 2024. "Capacity planning with uncertainty on contract fulfillment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 152-175.
    2. Johannes Rentschler & Ralf Elbert & Felix Weber, 2022. "Promoting Sustainability through Synchromodal Transportation: A Systematic Literature Review and Future Fields of Research," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    3. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    4. Guo, Wenjing & Zhang, Yimeng & Li, Wenfeng & Negenborn, Rudy R. & Atasoy, Bilge, 2024. "Augmented Lagrangian relaxation-based coordinated approach for global synchromodal transport planning with multiple operators," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    5. Andreas Balster & Ole Hansen & Hanno Friedrich & André Ludwig, 2020. "An ETA Prediction Model for Intermodal Transport Networks Based on Machine Learning," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(5), pages 403-416, October.
    6. Zhang, Li-Hao & Zhang, Yang-Guang & Wang, Shan-Shan, 2022. "Ocean shipping company’s encroachment with outsourcing competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Riccardo Giusti & Daniele Manerba & Roberto Tadei, 2021. "Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    8. Marta Gonzalez-Aregall & Kevin Cullinane & Inge Vierth, 2021. "A Review of Port Initiatives to Promote Freight Modal Shifts in Europe: Evidence from Port Governance Systems," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    9. Gumuskaya, Volkan & van Jaarsveld, Willem & Dijkman, Remco & Grefen, Paul & Veenstra, Albert, 2020. "Dynamic barge planning with stochastic container arrivals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    10. Guo, Wenjing & Atasoy, Bilge & van Blokland, Wouter Beelaerts & Negenborn, Rudy R., 2021. "Global synchromodal transport with dynamic and stochastic shipment matching," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    11. Sakti, Sekar & Zhang, Lele & Thompson, Russell G., 2023. "Synchronization in synchromodality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    12. Yavas, Volkan & Ozkan-Ozen, Yesim Deniz, 2020. "Logistics centers in the new industrial era: A proposed framework for logistics center 4.0," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    13. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    14. Akyüz, M. Hakan & Dekker, Rommert & Sharif Azadeh, Shadi, 2023. "Partial and complete replanning of an intermodal logistic system under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    2. Giusti, Riccardo & Manerba, Daniele & Bruno, Giorgio & Tadei, Roberto, 2019. "Synchromodal logistics: An overview of critical success factors, enabling technologies, and open research issues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 92-110.
    3. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    4. Beatriz Acero & Maria Jesus Saenz & Davide Luzzini, 2022. "Introducing synchromodality: One missing link between transportation and supply chain management," Journal of Supply Chain Management, Institute for Supply Management, vol. 58(1), pages 51-64, January.
    5. Sakti, Sekar & Zhang, Lele & Thompson, Russell G., 2023. "Synchronization in synchromodality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    7. Akyüz, M. Hakan & Dekker, Rommert & Sharif Azadeh, Shadi, 2023. "Partial and complete replanning of an intermodal logistic system under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    8. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    9. Johannes Rentschler & Ralf Elbert & Felix Weber, 2022. "Promoting Sustainability through Synchromodal Transportation: A Systematic Literature Review and Future Fields of Research," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    10. Gumuskaya, Volkan & van Jaarsveld, Willem & Dijkman, Remco & Grefen, Paul & Veenstra, Albert, 2020. "Dynamic barge planning with stochastic container arrivals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    11. Dandan Chen & Yong Zhang & Liangpeng Gao & Russell G. Thompson, 2019. "Optimizing Multimodal Transportation Routes Considering Container Use," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    12. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    13. Demir, Emrah & Burgholzer, Wolfgang & Hrušovský, Martin & Arıkan, Emel & Jammernegg, Werner & Woensel, Tom Van, 2016. "A green intermodal service network design problem with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 789-807.
    14. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    15. Li, Le & Negenborn, Rudy R. & De Schutter, Bart, 2017. "Distributed model predictive control for cooperative synchromodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 240-260.
    16. Arturo E. Pérez Rivera & Martijn R. K. Mes, 2019. "Integrated scheduling of drayage and long-haul operations in synchromodal transport," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 763-806, September.
    17. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    18. Yi Zhao & Ronghui Liu & Xi Zhang & Anthony Whiteing, 2018. "A chance-constrained stochastic approach to intermodal container routing problems," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-22, February.
    19. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    20. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:131:y:2019:i:c:p:308-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.