IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v56y2013icp254-264.html
   My bibliography  Save this article

Maximizing bus discharge flows from multi-berth stops by regulating exit maneuvers

Author

Listed:
  • Gu, Weihua
  • Cassidy, Michael J.

Abstract

Upon having loaded and unloaded their passengers, buses are often free to exit a multi-berth bus stop without delay. A bus need not wait to perform this exit maneuver, even if it requires circumventing one or more other buses that are still dwelling in the stop’s downstream berths. Yet, many jurisdictions impose restrictions on bus entry maneuvers into a stop to limit disruptions to cars and other buses. Buses are typically prohibited from entering a stop whenever this would require maneuvering around other buses still dwelling in upstream berths. An entering bus is instead required to wait in queue until the upstream berths are vacated.

Suggested Citation

  • Gu, Weihua & Cassidy, Michael J., 2013. "Maximizing bus discharge flows from multi-berth stops by regulating exit maneuvers," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 254-264.
  • Handle: RePEc:eee:transb:v:56:y:2013:i:c:p:254-264
    DOI: 10.1016/j.trb.2013.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513001410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Weihua & Cassidy, Michael J. & Li, Yuwei, 2012. "On the capacity of highway checkpoints: Models for unconventional configurations," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1308-1321.
    2. Gu, Weihua & Li, Yuwei & Cassidy, Michael J. & Griswold, Julia B., 2011. "On the capacity of isolated, curbside bus stops," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 714-723, May.
    3. Turnquist, Mark A. & Bowman, Larry A., 1980. "The effects of network structure on reliability of transit service," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 79-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Minyu & Gu, Weihua & Hu, Sangen & Cheng, Han, 2019. "Capacity approximations for near- and far-side bus stops in dedicated bus lanes," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 94-120.
    2. Bomin Bian & Michael Pinedo & Ning Zhu & Shoufeng Ma, 2019. "Performance Analysis of Overtaking Maneuvers at Bus Stops with Tandem Berths," Transportation Science, INFORMS, vol. 53(2), pages 597-618, March.
    3. Weihua Gu & Michael J. Cassidy & Yuwei Li, 2015. "Models of Bus Queueing at Curbside Stops," Transportation Science, INFORMS, vol. 49(2), pages 204-212, May.
    4. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    5. Lu Liu & Zhanglei Bian & Qinghui Nie, 2022. "Finding the Optimal Bus-Overtaking Rules for Bus Stops with Two Tandem Berths," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    6. Hu, Sangen & Shen, Minyu & Gu, Weihua, 2023. "Impacts of bus overtaking policies on the capacity of bus stops," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    7. Wang, Tao & Huang, Li & Tian, Junfang & Zhang, Jing & Yuan, Zijian & Zheng, Jianfeng, 2024. "Bus dwell time estimation and overtaking maneuvers analysis: A stochastic process approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Minyu Shen & Weihua Gu & Michael J. Cassidy & Yongjie Lin & Wei Ni, 2024. "A vicious cycle along busy bus corridors and how to abate it," Papers 2403.08230, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Sangen & Shen, Minyu & Gu, Weihua, 2023. "Impacts of bus overtaking policies on the capacity of bus stops," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    2. Shen, Minyu & Gu, Weihua & Hu, Sangen & Cheng, Han, 2019. "Capacity approximations for near- and far-side bus stops in dedicated bus lanes," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 94-120.
    3. Weihua Gu & Michael J. Cassidy & Yuwei Li, 2015. "Models of Bus Queueing at Curbside Stops," Transportation Science, INFORMS, vol. 49(2), pages 204-212, May.
    4. Alessandro Vitale & Giuseppe Guido & Daniele Rogano, 2016. "A smartphone based DSS platform for assessing transit service attributes," Public Transport, Springer, vol. 8(2), pages 315-340, September.
    5. Tao Jiang, 2018. "Analysis of a Tollbooth Tandem Queue with Two-Class Customers and Two Heterogeneous Dedicated Servers," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-21, December.
    6. N. Oort, 2016. "Incorporating enhanced service reliability of public transport in cost-benefit analyses," Public Transport, Springer, vol. 8(1), pages 143-160, March.
    7. Oliver Ullrich & Daniel Lückerath & Ewald Speckenmeyer, 2016. "Do regular timetables help to reduce delays in tram networks? It depends!," Public Transport, Springer, vol. 8(1), pages 39-56, March.
    8. He, Qi-Ming & Chao, Xiuli, 2014. "A tollbooth tandem queue with heterogeneous servers," European Journal of Operational Research, Elsevier, vol. 236(1), pages 177-189.
    9. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    10. Brunilde Sansò & Luc Milot, 1999. "Performability of a Congested Urban Transportation Network When Accident Information is Available," Transportation Science, INFORMS, vol. 33(1), pages 68-79, February.
    11. Feng, Xuejun & Hu, Sangen & Gu, Weihua & Jin, Xin & Lu, Yuan, 2020. "A simulation-based approach for assessing seaside infrastructure improvement measures for large marine crude oil terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Bomin Bian & Michael Pinedo & Ning Zhu & Shoufeng Ma, 2019. "Performance Analysis of Overtaking Maneuvers at Bus Stops with Tandem Berths," Transportation Science, INFORMS, vol. 53(2), pages 597-618, March.
    13. Wang, Zhichao & Jiang, Rui & Jiang, Yu & Gao, Ziyou & Liu, Ronghui, 2024. "Modelling bus bunching along a common line corridor considering passenger arrival time and transfer choice under stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    14. Bai, Qiaowen & Ong, Ghim Ping, 2023. "Similarity-based bus services assignment with capacity constraint for staggered bus stops," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    15. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    16. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    17. Chakrabarti, Sandip, 2015. "The demand for reliable transit service: New evidence using stop level data from the Los Angeles Metro bus system," Journal of Transport Geography, Elsevier, vol. 48(C), pages 154-164.
    18. Dessouky, Maged & Singh, Ajay & Hall, Randolph, 1997. "Transit ITS Simulator (TRANSITS): Design Document," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt49k184rv, Institute of Transportation Studies, UC Berkeley.
    19. Sandip Chakrabarti & Genevieve Giuliano, 2014. "Does service reliability influence transit patronage? Evidence from Los Angeles, and implications for transit policy," Working Paper 9297, USC Lusk Center for Real Estate.
    20. Liu, Rick Zhaoju & Shalaby, Amer, 2024. "Impacts of public transit delays and disruptions on equity seeking groups in Toronto – A time-expanded graph approach," Journal of Transport Geography, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:56:y:2013:i:c:p:254-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.