IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v34y2000i3p203-217.html
   My bibliography  Save this article

Optimization of the transportation expense of a firm with contractual supplies

Author

Listed:
  • Dangalchev, Chavdar A.

Abstract

We consider nonlinear nonconvex capacitated transportation problems where the nonlinearity occurs only in the last row of the transportation tableau. This transportation model can be successfully applied to economics representing the nonlinearity caused by penalties for unsatisfied contractual quantities or by changing in price. An algorithm for local optimization, based on the algorithms for solving linear transportation problems, is suggested. It consists of three phases - initial, linear and nonlinear. The nonlinear phase uses auxiliary linear transportation problems. The algorithm is illustrated by proper examples. Sufficient conditions for satisfying contractual supplies are given.

Suggested Citation

  • Dangalchev, Chavdar A., 2000. "Optimization of the transportation expense of a firm with contractual supplies," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 203-217, April.
  • Handle: RePEc:eee:transb:v:34:y:2000:i:3:p:203-217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00021-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. R. Fulkerson, 1959. "Increasing the Capacity of a Network: The Parametric Budget Problem," Management Science, INFORMS, vol. 5(4), pages 472-483, July.
    2. Allen R. Ferguson & George B. Dantzig, 1956. "The Allocation of Aircraft to Routes--An Example of Linear Programming Under Uncertain Demand," Management Science, INFORMS, vol. 3(1), pages 45-73, October.
    3. Dangalchev, Chavdar Atanasov, 1996. "Partially-linear transportation problems," European Journal of Operational Research, Elsevier, vol. 91(3), pages 623-633, June.
    4. Ahuja, R. K. & Batra, J. L. & Gupta, S. K., 1984. "A parametric algorithm for convex cost network flow and related problems," European Journal of Operational Research, Elsevier, vol. 16(2), pages 222-235, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khurana, Archana & Adlakha, Veena & Lev, Benjamin, 2018. "Multi-index constrained transportation problem with bounds on availabilities, requirements and commodities," Operations Research Perspectives, Elsevier, vol. 5(C), pages 319-333.
    2. Dalbinder Kour & Sathi Mukherjee & Kajla Basu, 2017. "Solving intuitionistic fuzzy transportation problem using linear programming," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1090-1101, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Barahona & Stuart Bermon & Oktay Günlük & Sarah Hood, 2005. "Robust capacity planning in semiconductor manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 459-468, August.
    2. Ahuja, Ravindra K., 1956- & Kanpur, I. I. T. & Orlin, James B., 1953-, 1993. "A capacity scaling algorithm for the constrained maximum flow problem," Working papers 3587-93., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Listes, O.L. & Dekker, R., 2002. "A scenario aggregation based approach for determining a robust airline fleet composition," Econometric Institute Research Papers EI 2002-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Güzin Bayraksan & David P. Morton, 2011. "A Sequential Sampling Procedure for Stochastic Programming," Operations Research, INFORMS, vol. 59(4), pages 898-913, August.
    5. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    6. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    7. ÇalIskan, Cenk, 2011. "A specialized network simplex algorithm for the constrained maximum flow problem," European Journal of Operational Research, Elsevier, vol. 210(2), pages 137-147, April.
    8. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    9. Spyros Kontogiorgis, 2000. "Practical Piecewise-Linear Approximation for Monotropic Optimization," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 324-340, November.
    10. Algo Carè & Simone Garatti & Marco C. Campi, 2014. "FAST---Fast Algorithm for the Scenario Technique," Operations Research, INFORMS, vol. 62(3), pages 662-671, June.
    11. Richard W. Cottle, 2005. "George B. Dantzig: Operations Research Icon," Operations Research, INFORMS, vol. 53(6), pages 892-898, December.
    12. Frangioni, Antonio, 1995. "On a new class of bilevel programming problems and its use for reformulating mixed integer problems," European Journal of Operational Research, Elsevier, vol. 82(3), pages 615-646, May.
    13. Burkard, Rainer E. & Lin, Yixun & Zhang, Jianzhong, 2004. "Weight reduction problems with certain bottleneck objectives," European Journal of Operational Research, Elsevier, vol. 153(1), pages 191-199, February.
    14. Dalbinder Kour & Sathi Mukherjee & Kajla Basu, 2017. "Solving intuitionistic fuzzy transportation problem using linear programming," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1090-1101, November.
    15. V. Balachandran & Suresh Jain, 1975. "Optimal Facility Location under Random Demand with General Cost Structure," Discussion Papers 149, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    16. Marcel Klatt & Axel Munk & Yoav Zemel, 2022. "Limit laws for empirical optimal solutions in random linear programs," Annals of Operations Research, Springer, vol. 315(1), pages 251-278, August.
    17. Alan S. Manne, 1958. "A Target-Assignment Problem," Operations Research, INFORMS, vol. 6(3), pages 346-351, June.
    18. Shakeel Javaid & Dr. S.N. Gupta, 2008. "Capacitated Stochastic Fractional Transshipment Problem," Journal of Commerce and Trade, Society for Advanced Management Studies, vol. 3(1), pages 84-93, April.
    19. Majid Taghavi & Kai Huang, 2016. "A multi‐stage stochastic programming approach for network capacity expansion with multiple sources of capacity," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 600-614, December.
    20. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:34:y:2000:i:3:p:203-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.