IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v33y1999i8p535-558.html
   My bibliography  Save this article

Longitudinal analysis of activity and travel pattern dynamics using generalized mixed Markov latent class models

Author

Listed:
  • Goulias, Konstadinos G.

Abstract

Understanding the dynamics of time allocation by households and their household members is becoming increasingly important for travel demand forecasting. A unique opportunity to understand day-to-day and year-to-year behavioral change, is provided by data from multi-day travel diaries combined with yearly observation of the same individuals over time (panel surveys). In fact, the "repeated" nature of the data allows to distinguish units that over time change their behavior from those that are not and to uncover the underlying stochastic behavior generating the data. In this paper data from the Puget Sound Transportation Panel (PSTP) are analyzed to identify change in the patterns of time allocation by the panel participants (i.e., patterns of activity participation and travel). The data analyzed are sequences of states in categorical data from reported individuals' daily activity participation and travel indicators. This is done separately for activity participation and trip making using probabilistic models that generalize the restrictive Markov chain models by incorporating unobserved variables of change. The PSTP data analysis here suggests the more likely presence of multiple paths of change for time allocation to activities, non-stationary switching of activity participation from one year to the next, and day-to-day stationarity in activity participation pattern switching. Travel pattern change is best explained by a single path of change with stationary day-to-day pattern transition probabilities that are different from their year-to-year counterparts.

Suggested Citation

  • Goulias, Konstadinos G., 1999. "Longitudinal analysis of activity and travel pattern dynamics using generalized mixed Markov latent class models," Transportation Research Part B: Methodological, Elsevier, vol. 33(8), pages 535-558, November.
  • Handle: RePEc:eee:transb:v:33:y:1999:i:8:p:535-558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00005-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bobin & Shao, Chunfu & Ji, Xun, 2017. "Dynamic analysis of holiday travel behaviour with integrated multimodal travel information usage: A life-oriented approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 255-280.
    2. Zhao, Zhan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2018. "Detecting pattern changes in individual travel behavior: A Bayesian approach," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 73-88.
    3. Chenfeng Xiong & Xiqun Chen & Xiang He & Wei Guo & Lei Zhang, 2015. "The analysis of dynamic travel mode choice: a heterogeneous hidden Markov approach," Transportation, Springer, vol. 42(6), pages 985-1002, November.
    4. Jenn, Alan & Lee, Jae Hyun & Hardman, Scott & Tal, Gil, 2020. "An in-depth examination of electric vehicle incentives: Consumer heterogeneity and changing response over time," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 97-109.
    5. Chenfeng Xiong & Di Yang & Lei Zhang, 2018. "A High-Order Hidden Markov Model and Its Applications for Dynamic Car Ownership Analysis," Service Science, INFORMS, vol. 52(6), pages 1365-1375, December.
    6. Allahviranloo, Mahdieh & Aissaoui, Leila, 2019. "A comparison of time-use behavior in metropolitan areas using pattern recognition techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 271-287.
    7. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    8. Jenn, Alan & Lee, Jae Hyun & Hardman, Scott & Tal, Gil, 2019. "An Examination of the Impact That Electric Vehicle Incentives Have on Consumer Purchase Decisions Over Time," Institute of Transportation Studies, Working Paper Series qt0x28831g, Institute of Transportation Studies, UC Davis.
    9. Lee, Backjin & Timmermans, Harry J.P., 2007. "A latent class accelerated hazard model of activity episode durations," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 426-447, May.
    10. Han, Gain & Sohn, Keemin, 2016. "Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 121-135.
    11. Stanislav S. Borysov & Jeppe Rich, 2021. "Introducing synthetic pseudo panels: application to transport behaviour dynamics," Transportation, Springer, vol. 48(5), pages 2493-2520, October.
    12. Kroesen, Maarten, 2014. "Modeling the behavioral determinants of travel behavior: An application of latent transition analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 56-67.
    13. Lee, Jae Hyun & Davis, Adam W. & Goulias, Konstadinos G., 2017. "Triggers of behavioral change: Longitudinal analysis of travel behavior, household composition and spatial characteristics of the residence," Journal of choice modelling, Elsevier, vol. 24(C), pages 4-21.
    14. Yeun-Touh Li & Jan-Dirk Schmöcker, 2017. "Adaptation patterns to high speed rail usage in Taiwan and China," Transportation, Springer, vol. 44(4), pages 807-830, July.
    15. Hardman, Scott & Lee, Jae Hyun & Tal, Gil, 2019. "How do drivers use automation? Insights from a survey of partially automated vehicle owners in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 246-256.
    16. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    17. Chenfeng Xiong & Lei Zhang, 2017. "Dynamic travel mode searching and switching analysis considering hidden model preference and behavioral decision processes," Transportation, Springer, vol. 44(3), pages 511-532, May.
    18. Jae Hyun Lee & Adam W. Davis & Seo Youn Yoon & Konstadinos G. Goulias, 2016. "Activity space estimation with longitudinal observations of social media data," Transportation, Springer, vol. 43(6), pages 955-977, November.
    19. Lisa Döring & Maarten Kroesen & Christian Holz-Rau, 2019. "The role of parents’ mobility behavior for dynamics in car availability and commute mode use," Transportation, Springer, vol. 46(3), pages 957-994, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:33:y:1999:i:8:p:535-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.