IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v28y1994i2p161-174.html
   My bibliography  Save this article

Traffic assignment in a congested discrete/ continuous transportation system

Author

Listed:
  • Yang, Hai
  • Yagar, Sam
  • Iida, Yasunori

Abstract

Consider a city where all workplaces are concentrated in a highly compact central business district (CBD) and the commuters' homes are continuously dispersed over the residential area surrounding the CBD. The transportation facilities in the city comprise a discrete freeway network and a two-dimensional continuum of dense surface streets. The freeway network is assumed to be superimposed on the continuum and connected with it at a limited number of points (freeway ramps). During the morning peak-hours, the commuters traveling to work have a choice between two routes to the CBD: traveling along the minor access roads to enter the freeways and then proceeding along the freeway to the CBD, or using only minor street roads straight to the CBD. Given this transportation system, it is important to estimate the total trips using each freeway ramp and their spatial distribution. In this paper, an optimization model is developed to deal with this traffic assignment problem, provided that each commuter seeks to minimize his individual congested travel time. The model is formulated by intergrating the conventional network and continuum equilibrium models and its dual formation is derived. A dual-based solution method is developed using the finite element technique, and illustrated with a numerical example for a hypothetical city.

Suggested Citation

  • Yang, Hai & Yagar, Sam & Iida, Yasunori, 1994. "Traffic assignment in a congested discrete/ continuous transportation system," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 161-174, April.
  • Handle: RePEc:eee:transb:v:28:y:1994:i:2:p:161-174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(94)90023-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, H.W. & Wong, S.C. & Yang, Hai & Loo, Becky P.Y., 2005. "Cordon-based congestion pricing in a continuum traffic equilibrium system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 813-834.
    2. Karakaya, Emrah, 2016. "Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how?," Applied Energy, Elsevier, vol. 163(C), pages 464-475.
    3. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    4. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.
    5. Liu, Tian-Liang & Huang, Hai-Jun & Yang, Hai & Zhang, Xiaoning, 2009. "Continuum modeling of park-and-ride services in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 692-707, July.
    6. Ho, H.W. & Wong, S.C. & Loo, Becky P.Y., 2006. "Combined distribution and assignment model for a continuum traffic equilibrium problem with multiple user classes," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 633-650, September.
    7. Ouyang, Yanfeng & Wang, Zhaodong & Yang, Hai, 2015. "Facility location design under continuous traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 18-33.
    8. Ross, Stephen L. & Yinger, John, 2000. "Timing Equilibria in an Urban Model with Congestion," Journal of Urban Economics, Elsevier, vol. 47(3), pages 390-413, May.
    9. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    10. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2004. "Dynamic user-optimal assignment in continuous time and space," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 571-592, August.
    11. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    12. Karakaya, Emrah, 2014. "Finite Element Model of the Innovation Diffusion: An Application to Photovoltaic Systems," INDEK Working Paper Series 2014/6, Royal Institute of Technology, Department of Industrial Economics and Management.
    13. Wong, S. C., 1998. "Multi-commodity traffic assignment by continuum approximation of network flow with variable demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 567-581, November.
    14. Hai Yang & S. C. Wong, 2000. "A Continuous Equilibrium Model for Estimating Market Areas of Competitive Facilities with Elastic Demand and Market Externality," Transportation Science, INFORMS, vol. 34(2), pages 216-227, May.
    15. Zhi-Yang Lin & S. C. Wong & Peng Zhang & Keechoo Choi, 2018. "A Predictive Continuum Dynamic User-Optimal Model for the Simultaneous Departure Time and Route Choice Problem in a Polycentric City," Service Science, INFORMS, vol. 52(6), pages 1496-1508, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:28:y:1994:i:2:p:161-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.