IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v22y1988i6p399-409.html
   My bibliography  Save this article

Discrete and continuous models for computation of optimal vertical highway alignment

Author

Listed:
  • Goh, C. J.
  • Chew, E. P.
  • Fwa, T. F.

Abstract

This paper describes a dynamic programming model and a state parametrization model formulated to solve two-dimensional highway location problems. A numerical example is presented to compare the solutions obtained using the two models. Features of the two approaches, with respect to their applicability in solving three-dimensional highway location problems in particular, are highlighted. This study forms the basis of a three-dimensional model that computes optimal horizontal and vertical alignments simultaneously.

Suggested Citation

  • Goh, C. J. & Chew, E. P. & Fwa, T. F., 1988. "Discrete and continuous models for computation of optimal vertical highway alignment," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 399-409, December.
  • Handle: RePEc:eee:transb:v:22:y:1988:i:6:p:399-409
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(88)90021-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Monnet & Warren Hare & Yves Lucet, 2020. "Fast feasibility check of the multi-material vertical alignment problem in road design," Computational Optimization and Applications, Springer, vol. 75(2), pages 515-536, March.
    2. Lee, Yusin & Cheng, Juey-Fu, 2001. "A model for calculating optimal vertical alignments of interchanges," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 423-445, June.
    3. Hare, Warren & Lucet, Yves & Rahman, Faisal, 2015. "A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction," European Journal of Operational Research, Elsevier, vol. 241(3), pages 631-641.
    4. Kim, Eungcheol & Jha, Manoj K. & Son, Bongsoo, 2005. "Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 339-360, May.
    5. Jong, Jyh-Cherng & Schonfeld, Paul, 2003. "An evolutionary model for simultaneously optimizing three-dimensional highway alignments," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 107-128, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:22:y:1988:i:6:p:399-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.