IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v189y2024ics0191261524001449.html
   My bibliography  Save this article

Integrated departure and boundary control for low-altitude air city transport systems

Author

Listed:
  • Safadi, Yazan
  • Geroliminis, Nikolas
  • Haddad, Jack

Abstract

Connectivity and digitalization will enable new control measures in urban air mobility operations and open new ways for integrating these measures in real-time traffic management. Hence, new control strategies can be designed to regulate both demand and supply of Low-Altitude Air city Transport (LAAT) systems. This can be achieved by adjusting aircraft departure times, and manipulating transfer aircraft flows at boundary air regions. In this research, new model-based control strategies are designed, where aircraft departure management and boundary control strategies are integrated. The aviation operation can benefit from the proposed flow-oriented control paradigm, which can balance the LAAT system’s supply and demand, i.e. controlling the transfer flow between airspace regions and simultaneously managing the aircraft departure (inflow). The current paper presents the development of different control strategies: Departure Controller (DC), Boundary Controller (BC), and integrated Departure and Boundary Controller (DBC), with supporting simulation results. The designed controllers are tested in a new LAAT framework that considers modeling and control of LAAT operation while capturing the microscopic and macroscopic levels simultaneously.

Suggested Citation

  • Safadi, Yazan & Geroliminis, Nikolas & Haddad, Jack, 2024. "Integrated departure and boundary control for low-altitude air city transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001449
    DOI: 10.1016/j.trb.2024.103020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    2. Haddad, Jack, 2017. "Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 1-25.
    3. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    4. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    5. Cohen, Adam P & Shaheen, Susan A PhD & Farrar, Emily M, 2021. "Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8nh0s83q, Institute of Transportation Studies, UC Berkeley.
    6. Doole, Malik & Ellerbroek, Joost & Hoekstra, Jacco, 2020. "Estimation of traffic density from drone-based delivery in very low level urban airspace," Journal of Air Transport Management, Elsevier, vol. 88(C).
    7. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    8. Haddad, Jack & Geroliminis, Nikolas, 2012. "On the stability of traffic perimeter control in two-region urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1159-1176.
    9. Keyvan-Ekbatani, Mehdi & Kouvelas, Anastasios & Papamichail, Ioannis & Papageorgiou, Markos, 2012. "Exploiting the fundamental diagram of urban networks for feedback-based gating," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1393-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    2. Li, Xinghua & Zhang, Xinyuan & Qian, Xinwu & Zhao, Cong & Guo, Yuntao & Peeta, Srinivas, 2024. "Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    3. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    4. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    5. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    6. Su, Z.C. & Chow, Andy H.F. & Fang, C.L. & Liang, E.M. & Zhong, R.X., 2023. "Hierarchical control for stochastic network traffic with reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 196-216.
    7. Yildirimoglu, Mehmet & Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 106-123.
    8. Mohajerpoor, Reza & Saberi, Meead & Vu, Hai L. & Garoni, Timothy M. & Ramezani, Mohsen, 2020. "H∞ robust perimeter flow control in urban networks with partial information feedback," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 47-73.
    9. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    10. Batista, S.F.A. & Leclercq, Ludovic & Geroliminis, Nikolas, 2019. "Estimation of regional trip length distributions for the calibration of the aggregated network traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 192-217.
    11. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    12. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    13. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    14. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    15. Alonso, Borja & Ibeas, Ángel & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Effects of traffic control regulation on Network Macroscopic Fundamental Diagram: A statistical analysis of real data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 136-151.
    16. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    17. Ma, Wenfei & Huang, Yunping & Jin, Xiao & Zhong, Renxin, 2024. "Functional form selection and calibration of macroscopic fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    18. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    19. Haddad, Jack, 2017. "Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 1-25.
    20. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gu, Xinxin, 2021. "Perimeter traffic control for single urban congested region with macroscopic fundamental diagram and boundary conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.