IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v175y2023ics019126152300125x.html
   My bibliography  Save this article

Investment timing and length choice for a rail transit line under demand uncertainty

Author

Listed:
  • Guo, Qianwen
  • Chen, Shumin
  • Sun, Yanshuo
  • Schonfeld, Paul

Abstract

This paper is motivated by the inadequate treatment of uncertainty in public transit infrastructure investments. As observed in the past, rare but dramatic events can heavily disrupt public transit system operations and negatively affect the transit riders. For example, the COVID-19 pandemic caused an 80%-90% transit demand decline in March 2020 in the U.S. However, the existing transit infrastructure planning studies have not modeled such sudden demand shocks. We thus improve the modeling realism of uncertain transit demand by formulating demand evolution as a jump-diffusion process, which is a combination of continuous-time Brownian motion and a discrete counting process, namely Poisson process, and present analytical optimization models for the development of a rail transit line under such uncertainty. We jointly optimize two related decisions, namely the timing for introducing rail transit to a commuter corridor and length choice for the rail line. We refute a misconception that investment in a project should always start immediately if a positive cost saving over the planning horizon is expected. We also find that investment timing and sizing decisions are closely related and behave quite differently for the same change in some parameters, such as the infrastructure construction period. The developed modeling and analysis framework should be transferable to other civil infrastructure development and investment problems under uncertainty.

Suggested Citation

  • Guo, Qianwen & Chen, Shumin & Sun, Yanshuo & Schonfeld, Paul, 2023. "Investment timing and length choice for a rail transit line under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:transb:v:175:y:2023:i:c:s019126152300125x
    DOI: 10.1016/j.trb.2023.102800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152300125X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    2. Bohan Chen & Jose Blanchet & Chang-Han Rhee & Bert Zwart, 2019. "Efficient Rare-Event Simulation for Multiple Jump Events in Regularly Varying Random Walks and Compound Poisson Processes," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 919-942, August.
    3. Friesz, Terry L. & Mookherjee, Reetabrata & Yao, Tao, 2008. "Securitizing congestion: The congestion call option," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 407-437, June.
    4. Li, Zhi-Chun & Guo, Qian-Wen & Lam, William H.K. & Wong, S.C., 2015. "Transit technology investment and selection under urban population volatility: A real option perspective," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 318-340.
    5. Balliauw, Matteo & Onghena, Evy, 2020. "Expanding airport capacity of cities under uncertainty: Strategies to mitigate congestion," Journal of Air Transport Management, Elsevier, vol. 84(C).
    6. Litman, Todd, 2007. "Evaluating rail transit benefits: A comment," Transport Policy, Elsevier, vol. 14(1), pages 94-97, January.
    7. Sun, Yanshuo & Schonfeld, Paul, 2016. "Holding decisions for correlated vehicle arrivals at intermodal freight transfer terminals," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 218-240.
    8. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    9. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    10. Luyu Liu & Harvey J Miller & Jonathan Scheff, 2020. "The impacts of COVID-19 pandemic on public transit demand in the United States," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    11. Shyue Koong Chang & Paul M. Schonfeld, 1991. "Optimization Models for Comparing Conventional and Subscription Bus Feeder Services," Transportation Science, INFORMS, vol. 25(4), pages 281-298, November.
    12. Saphores, Jean-Daniel M. & Boarnet, Marlon G., 2006. "Uncertainty and the timing of an urban congestion relief investment.: The no-land case," Journal of Urban Economics, Elsevier, vol. 59(2), pages 189-208, March.
    13. Gualter Couto & Cláudia Nunes & Pedro Pimentel, 2015. "High-speed rail transport valuation and conjecture shocks," The European Journal of Finance, Taylor & Francis Journals, vol. 21(10-11), pages 791-805, August.
    14. van Oort, Niels, 2014. "Incorporating service reliability in public transport design and performance requirements: International survey results and recommendations," Research in Transportation Economics, Elsevier, vol. 48(C), pages 92-100.
    15. N. Oort, 2016. "Incorporating enhanced service reliability of public transport in cost-benefit analyses," Public Transport, Springer, vol. 8(1), pages 143-160, March.
    16. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Restating modal investment priority with an improved model for public transport analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1148-1168, November.
    17. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    18. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    19. Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
    20. Chow, Joseph Y.J. & Regan, Amelia C., 2011. "Network-based real option models," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 682-695, May.
    21. Wu, Fei & Schonfeld, Paul, 2022. "Optimized two-directional phased development of a rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 424-447.
    22. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    23. Sivakumaran, Karthik & Li, Yuwei & Cassidy, Michael & Madanat, Samer, 2014. "Access and the choice of transit technology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 204-221.
    24. Guo, Qian-Wen & Chen, Shumin & Schonfeld, Paul & Li, Zhongfei, 2018. "How time-inconsistent preferences affect investment timing for rail transit," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 172-192.
    25. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Guo, Qian-Wen & Lam, William H.K. & Wong, S.C., 2015. "Transit technology investment and selection under urban population volatility: A real option perspective," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 318-340.
    2. Guo, Qian-Wen & Chen, Shumin & Schonfeld, Paul & Li, Zhongfei, 2018. "How time-inconsistent preferences affect investment timing for rail transit," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 172-192.
    3. Zheng, Shiyuan & Wang, Kun & Chan, Felix T.S. & Fu, Xiaowen & Li, Zhi-Chun, 2022. "Subsidy on transport adaptation investment-modeling decisions under incomplete information and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 103-129.
    4. Luigi Moccia & Duncan W. Allen & Gilbert Laporte & Andrea Spinosa, 2022. "Mode boundaries of automated metro and semi-rapid rail in urban transit," Public Transport, Springer, vol. 14(3), pages 739-802, October.
    5. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    6. Xiao, Yi-bin & Fu, Xiaowen & Oum, Tae H. & Yan, Jia, 2017. "Modeling airport capacity choice with real options," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 93-114.
    7. Dezhi Zhang & Jiehui Jiang & Shuangyan Li & Xiamiao Li & Qingwen Zhan, 2017. "Optimal Investment Timing and Size of a Logistics Park: A Real Options Perspective," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    8. Sang, Jinyan & Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2019. "Design of build-operate-transfer contract for integrated rail and property development with uncertainty in future urban population," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 36-66.
    9. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    10. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    11. Chow, Joseph Y.J. & Regan, Amelia C. & Ranaiefar, Fatemeh & Arkhipov, Dmitri I., 2011. "A network option portfolio management framework for adaptive transportation planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 765-778, October.
    12. Moccia, Luigi & Giallombardo, Giovanni & Laporte, Gilbert, 2017. "Models for technology choice in a transit corridor with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 733-756.
    13. Luigi Moccia & Duncan W. Allen & Eric C. Bruun, 2018. "A technology selection and design model of a semi-rapid transit line," Public Transport, Springer, vol. 10(3), pages 455-497, December.
    14. Zhang, Sizhe & Cardin, Michel-Alexandre, 2017. "Flexibility and real options analysis in emergency medical services systems using decision rules and multi-stage stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 120-140.
    15. Jara-Díaz, Sergio R. & Muñoz-Paulsen, Esteban, 2022. "Lessons from the strategic design of a bimodal public transport system on a linear city," Research in Transportation Economics, Elsevier, vol. 94(C).
    16. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    17. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    18. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    19. Edward Kim, M. & Schonfeld, Paul & Roche, Austin & Raleigh, Chelsie, 2022. "Optimal service zones and frequencies for flexible-route freight deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 182-199.
    20. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:175:y:2023:i:c:s019126152300125x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.