IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v96y2017icp154-167.html
   My bibliography  Save this article

Bayesian estimation of hazard models of airline passengers’ cancellation behavior

Author

Listed:
  • Chiew, Esther
  • Daziano, Ricardo A.
  • Garrow, Laurie A.

Abstract

This study explores the use of Bayesian methods to estimate hazard models of airline passengers’ cancellation behavior. We show how the discrete time proportional odds (DTPO) cancellation model can be rewritten as an equivalent fixed parameter discrete choice model that can be easily estimated using Bayesian methods and extended to random parameters that account for unobserved heterogeneity. The use of Bayesian methods allows us to address several limitations of existing airline cancellation models. First, because of the random parameter reformulation, it is possible to calculate individual-specific cancellation probabilities. Second, unlike existing DTPO models that forecast average cancellation probabilities only, our model can be used to forecast both means and a measure of variance (credible intervals) associated with an individual’s cancellation probability. We apply the Bayesian estimation method to a dataset of tickets purchased over a two-year period by employees of a university in Atlanta, Georgia. During this time period, the major carrier in Atlanta terminated an agreement in which it allowed employees to purchase discounted fares that could be refunded or exchanged without a fee. The data allow us to investigate how passenger cancellation behavior changed when these fares were discontinued. Cancellations are reduced on average 3.3% when customers must pay to exchange their tickets. For a simulated hypothetical flight the coefficient of variation of cancellation is 43% when the state rate was offered, and 83% without state rates.

Suggested Citation

  • Chiew, Esther & Daziano, Ricardo A. & Garrow, Laurie A., 2017. "Bayesian estimation of hazard models of airline passengers’ cancellation behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 154-167.
  • Handle: RePEc:eee:transa:v:96:y:2017:i:c:p:154-167
    DOI: 10.1016/j.tra.2016.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416301057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. L. Brumelle & J. I. McGill, 1993. "Airline Seat Allocation with Multiple Nested Fare Classes," Operations Research, INFORMS, vol. 41(1), pages 127-137, February.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    3. Iliescu, Dan C. & Garrow, Laurie A. & Parker, Roger A., 2008. "A hazard model of US airline passengers' refund and exchange behavior," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 229-242, March.
    4. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    5. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    6. Jay Graham, R. & Garrow, Laurie A. & Leonard, John D., 2010. "Business travelers’ ticketing, refund, and exchange behavior," Journal of Air Transport Management, Elsevier, vol. 16(4), pages 196-201.
    7. Peter P. Belobaba, 1989. "OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control," Operations Research, INFORMS, vol. 37(2), pages 183-197, April.
    8. Garrow, Laurie A. & Hotle, Susan & Mumbower, Stacey, 2012. "Assessment of product debundling trends in the US airline industry: Customer service and public policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 255-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián & Santos, Bruno F., 2022. "CHAIRS: A choice-based air transport simulator applied to airline competition and revenue management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 297-315.
    2. Stacey Mumbower & Susan Hotle & Laurie A. Garrow, 2023. "Highly debated but still unbundled: The evolution of U.S. airline ancillary products and pricing strategies," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(4), pages 276-293, August.
    3. Xiao, Haohan & Xu, Min & Wang, Shuaian, 2024. "Auction-based parking mechanisms considering withdrawal behaviors," Transport Policy, Elsevier, vol. 147(C), pages 81-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavitha Balaiyan & R. K. Amit & Atul Kumar Malik & Xiaodong Luo & Amit Agarwal, 2019. "Joint forecasting for airline pricing and revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(6), pages 465-482, December.
    2. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    3. Guillermo Gallego & Haengju Lee, 2020. "Callable products with dependent demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(3), pages 185-200, April.
    4. Yingjie Lan & Huina Gao & Michael O. Ball & Itir Karaesmen, 2008. "Revenue Management with Limited Demand Information," Management Science, INFORMS, vol. 54(9), pages 1594-1609, September.
    5. Wang, Xiubin & Regan, Amelia, 2006. "Dynamic yield management when aircraft assignments are subject to swap," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 563-576, August.
    6. Michael O. Ball & Maurice Queyranne, 2009. "Toward Robust Revenue Management: Competitive Analysis of Online Booking," Operations Research, INFORMS, vol. 57(4), pages 950-963, August.
    7. Wang, Weidi & Tang, Ou & Huo, Jiazhen, 2018. "Dynamic capacity allocation for airlines with multi-channel distribution," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 173-181.
    8. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2006. "Models of the Spiral-Down Effect in Revenue Management," Operations Research, INFORMS, vol. 54(5), pages 968-987, October.
    9. Dan Zhang & William L. Cooper, 2005. "Revenue Management for Parallel Flights with Customer-Choice Behavior," Operations Research, INFORMS, vol. 53(3), pages 415-431, June.
    10. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    11. Dan Zhang & Zhaosong Lu, 2013. "Assessing the Value of Dynamic Pricing in Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 102-115, February.
    12. Selçuk Korkmaz & O. Erhun Kundakcioglu & Orhan Sivrikaya, 2022. "A fluid approximation for the single-leg fare allocation problem with nonhomogeneous poisson demand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(1), pages 81-96, February.
    13. Rennie, Nicola & Cleophas, Catherine & Sykulski, Adam M. & Dost, Florian, 2021. "Identifying and responding to outlier demand in revenue management," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1015-1030.
    14. Sierag, D.D. & Koole, G.M. & van der Mei, R.D. & van der Rest, J.I. & Zwart, B., 2015. "Revenue management under customer choice behaviour with cancellations and overbooking," European Journal of Operational Research, Elsevier, vol. 246(1), pages 170-185.
    15. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    16. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    17. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    18. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    19. Feng, Youyi & Xiao, Baichun, 2006. "A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1298-1316, October.
    20. Popovic, Jovan & Teodorovic, Dusan, 1997. "An adaptive method for generating demand inputs to airline seat inventory control models," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 159-175, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:96:y:2017:i:c:p:154-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.