IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v41y2007i7p691-702.html
   My bibliography  Save this article

Investigation and analysis of evidence of asymmetric churn in travel demand models

Author

Listed:
  • Saleh, Wafaa
  • Farrell, Séona

Abstract

There is a large amount of research work that has been devoted to the understanding of travel behaviour and for the prediction of travel demand and its management. Different types of data including stated preference and revealed preference, as well as different modelling approaches have been used to predict this. Essential to most travel demand forecasting models are the concepts of utility maximisation and equilibrium, although there have been alternative approaches for modelling travel behaviour. In this paper, the concept of asymmetric churn is discussed. That is travel behaviour should be considered as a two way process which changes over time. For example over time some travellers change their mode of travel from car to bus, but more travellers change their mode from bus to car. These changes are not equal and result in a net change in aggregate travel behaviour. Transport planners often aim at producing this effect in the opposite direction. It is important therefore to recognise the existence of churns in travel behaviour and to attempt to develop appropriate policies to target different groups of travellers with the relevant transport policies in order to improve the transport system. A data set collected from a recent large survey, which was carried out in Edinburgh is investigated to analyse the variations in departure time choice behaviour. The paper reports on the results of the investigation.

Suggested Citation

  • Saleh, Wafaa & Farrell, Séona, 2007. "Investigation and analysis of evidence of asymmetric churn in travel demand models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 691-702, August.
  • Handle: RePEc:eee:transa:v:41:y:2007:i:7:p:691-702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(06)00131-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleh, Wafaa & Farrell, Séona, 2005. "Implications of congestion charging for departure time choice: Work and non-work schedule flexibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 773-791.
    2. Cirillo, C. & Axhausen, K.W., 2006. "Evidence on the distribution of values of travel time savings from a six-week diary," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 444-457, June.
    3. Farrell, Séona & Saleh, Wafaa, 2005. "Road-user charging and the modelling of revenue allocation," Transport Policy, Elsevier, vol. 12(5), pages 431-442, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hitge, Gerhard & Joubert, Johan W., 2021. "A nodal approach for estimating potential cycling demand," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Lyons, Glenn & Hammond, Paul & Mackay, Kate, 2019. "The importance of user perspective in the evolution of MaaS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 22-36.
    3. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    4. Lyons, Glenn & Hammond, Paul & Mackay, Kate, 2020. "Reprint of: The importance of user perspective in the evolution of MaaS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 20-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zheng & Hensher, David A., 2012. "Congestion charging and car use: A review of stated preference and opinion studies and market monitoring evidence," Transport Policy, Elsevier, vol. 20(C), pages 47-61.
    2. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    3. Holz-Rau, Christian & Scheiner, Joachim, 2011. "Safety and travel time in cost-benefit analysis: A sensitivity analysis for North Rhine-Westphalia," Transport Policy, Elsevier, vol. 18(2), pages 336-346, March.
    4. Collantes, Gustavo O. & Mokhtarian, Patricia L., 2007. "Subjective assessments of personal mobility: What makes the difference between a little and a lot?," Transport Policy, Elsevier, vol. 14(3), pages 181-192, May.
    5. Milenković, Marina & Glavić, Draženko & Maričić, Milica, 2019. "Determining factors affecting congestion pricing acceptability," Transport Policy, Elsevier, vol. 82(C), pages 58-74.
    6. Eliasson, Jonas & Mattsson, Lars-Göran, 2006. "Equity effects of congestion pricing: Quantitative methodology and a case study for Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 602-620, August.
    7. Tian, Ye & Li, Yudi & Sun, Jian, 2022. "Stick or carrot for traffic demand management? Evidence from experimental economics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 235-254.
    8. Delucchi, Mark, 2007. "Do Motor-Vehicle Users in the US Pay Their Way?," Institute of Transportation Studies, Working Paper Series qt5841z3kx, Institute of Transportation Studies, UC Davis.
    9. Holgui­n-Veras, Jose & Cetin, Mecit & Xia, Shuwen, 2006. "A comparative analysis of US toll policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 852-871, December.
    10. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    11. Wu, Wen-Xiang & Huang, Hai-Jun, 2014. "Finding anonymous tolls to realize target flow pattern in networks with continuously distributed value of time," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 31-46.
    12. Wang, Qing & Zhao, Wenjing & Ma, Shoufeng & Schonfeld, Paul M. & Zheng, Yue & Xue, Dabin, 2023. "Effects of a price incentive policy on urban rail transit passengers: A case study in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    13. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    14. Tabasi, Maliheh & Rose, John M. & Pellegrini, Andrea & Hossein Rashidi, Taha, 2024. "An empirical investigation of the distribution of travellers’ willingness-to-pay: A comparison between a parametric and nonparametric approach," Transport Policy, Elsevier, vol. 146(C), pages 312-321.
    15. Delucchi, Mark, 2007. "Do Motor-Vehicle Users in the US Pay Their Way?," Institute of Transportation Studies, Working Paper Series qt2884w7km, Institute of Transportation Studies, UC Davis.
    16. Hess, S. & Bierlaire, Michel & Polak, J.W., 2007. "A systematic comparison of continuous and discrete mixture models," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 35-61.
    17. Hensher, David A. & Li, Zheng, 2013. "Referendum voting in road pricing reform: A review of the evidence," Transport Policy, Elsevier, vol. 25(C), pages 186-197.
    18. González, Rosa Marina & Marrero, Ángel Simón & Cherchi, Elisabetta, 2017. "Testing for inertia effect when a new tram is implemented," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 150-159.
    19. Beck, Matthew J. & Hensher, David A., 2022. "Working from home in Australia in 2020: Positives, negatives and the potential for future benefits to transport and society," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 271-284.
    20. Nurul Habib, Khandker & El-Assi, Wafic & Hasnine, Md. Sami & Lamers, James, 2017. "Daily activity-travel scheduling behaviour of non-workers in the National Capital Region (NCR) of Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 1-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:41:y:2007:i:7:p:691-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.