IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v32y1998i7p547-561.html
   My bibliography  Save this article

Adaptive ship routing through stochastic ocean currents: general formulations and empirical results

Author

Listed:
  • Lo, Hong K.
  • McCord, Mark R.

Abstract

Technological advances in satellite altimetry offer the potential for providing timely ocean current information which could be used when optimizing strategic ship routes. However, the time to collect and process the raw data and deliver the processed information to the end user makes the information an inaccurate description of the actual current patterns that would be encountered by a ship in areas of dynamic current activity. We, therefore, develop an optimization approach that explicitly addresses the uncertainty that results from these time lags. We formulate the routing problem as an adaptive, probabilistic dynamic program. Our formulation incorporates three information elements: (i) aged synoptic ocean current information; (ii) localized information encountered by the ship; and (iii) state transition probabilities of current changes derived from historical data. The solution provides a set of optimal policies that minimizes a ship's expected fuel consumption. We conduct a simulated, numerical study to compare the performance of our adaptive, probabilistic formulation to that of its deterministic counterpart in an area of the Gulf Stream. For the eastbound ('with current') voyages investigated, our approach consistently outperformed the deterministic approach. For the westbound ('against current') voyages, our approach performed equally well for time lags of 5 days or less and slightly better for longer time lags. These numerical results indicate the promise of our stochastic, adaptive formulation for the current routing problem.

Suggested Citation

  • Lo, Hong K. & McCord, Mark R., 1998. "Adaptive ship routing through stochastic ocean currents: general formulations and empirical results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 547-561, September.
  • Handle: RePEc:eee:transa:v:32:y:1998:i:7:p:547-561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(98)00018-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Hong K. & McCord, Mark R., 1995. "Routing through dynamic ocean currents: General heuristics and empirical results in the gulf stream region," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 109-124, April.
    2. Hong Kam Lo & McCord, Mark R. & Wall, Cori K., 1991. "Value of ocean current information for strategic routing," European Journal of Operational Research, Elsevier, vol. 55(2), pages 124-135, November.
    3. Anastassios N. Perakis & Nikiforos A. Papadakis, 1989. "Minimal Time Vessel Routing in a Time-Dependent Environment," Transportation Science, INFORMS, vol. 23(4), pages 266-276, November.
    4. Nikiforos A. Papadakis & Anastassios N. Perakis, 1990. "Deterministic Minimal Time Vessel Routing," Operations Research, INFORMS, vol. 38(3), pages 426-438, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo Gatica & Pablo Miranda, 2011. "Special Issue on Latin-American Research: A Time Based Discretization Approach for Ship Routing and Scheduling with Variable Speed," Networks and Spatial Economics, Springer, vol. 11(3), pages 465-485, September.
    2. Hee-Su Hwang & Siriwat Visoldilokpun & Jay M. Rosenberger, 2008. "A Branch-and-Price-and-Cut Method for Ship Scheduling with Limited Risk," Transportation Science, INFORMS, vol. 42(3), pages 336-351, August.
    3. An, Kun & Lo, Hong K., 2014. "Ferry service network design with stochastic demand under user equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 70-89.
    4. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    5. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    6. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    7. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    8. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo, Hong K. & McCord, Mark R., 1995. "Routing through dynamic ocean currents: General heuristics and empirical results in the gulf stream region," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 109-124, April.
    2. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    3. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    4. Irina S. Dolinskaya, 2012. "Optimal path finding in direction, location, and time dependent environments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 325-339, August.
    5. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    6. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    7. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    8. Irina S. Dolinskaya & Marina A. Epelman & Esra Şişikoğlu Sir & Robert L. Smith, 2016. "Parameter-Free Sampled Fictitious Play for Solving Deterministic Dynamic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 631-655, May.
    9. An, Kun & Lo, Hong K., 2014. "Ferry service network design with stochastic demand under user equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 70-89.
    10. Wu, Lingxiao & Wang, Shuaian & Laporte, Gilbert, 2021. "The Robust Bulk Ship Routing Problem with Batched Cargo Selection," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 124-159.
    11. Adland, Roar & Cariou, Pierre & Wolff, Francois-Charles, 2020. "Optimal ship speed and the cubic law revisited: Empirical evidence from an oil tanker fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    12. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    13. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    14. Roar Adland & Pierre Cariou & Francois-Charles Wolff, 2020. "Optimal ship speed and the cubic law revisited: Empirical evidence from an oil tanker fleet," Post-Print hal-03422276, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:32:y:1998:i:7:p:547-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.