IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v29y1995i6p429-443.html
   My bibliography  Save this article

Average duration and performance of actuated signal phases

Author

Listed:
  • Bonneson, James A.
  • Mccoy, Patrick T.

Abstract

This paper describes an approach for evaluating alternative traffic detection designs for a signalized intersection. The models described in this paper can be used to determine the average phase duration and frequency of phase "max-out" as a function of the detector loop layout, detector unit timing, traffic demand, and approach speed. Layout and timing are described by the number of detectors on each approach served by the phase, detector location on each approach, detector length, and detector unit and controller time settings. The authors have used the concept of maximum allowable headway (MAH) to combine the many possible combinations of layout and timing variables into one representative quantity, which greatly simplifies the modelling process. The performance models were used to examine the sensitivity of intersection performance to a range of design values. In general, both phase duration and cycle length increase with higher demands or larger MAHs. Multiloop (i.e. two or more detection zones per lane) detector designs typically have larger MAHs than designs with one detector loop per lane. Phase duration and cycle length also increase for very low demand levels. In terms of performance, the maximum green duration was found to have a contrary effect at higher flow conditions. Larger maximum greens were found to reduce delays to the phase in service by reducing the probability of max-out but they increased delays to drivers waiting for service.

Suggested Citation

  • Bonneson, James A. & Mccoy, Patrick T., 1995. "Average duration and performance of actuated signal phases," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(6), pages 429-443, November.
  • Handle: RePEc:eee:transa:v:29:y:1995:i:6:p:429-443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0965-8564(95)00004-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline S., 1989. "Priority intersection capacity: A generalization of Tanner's formula," Transportation Research Part B: Methodological, Elsevier, vol. 23(4), pages 281-286, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hagring, Ola, 1998. "A further generalization of Tanner's formula," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 423-429, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:29:y:1995:i:6:p:429-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.