IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v179y2024ics0965856423003269.html
   My bibliography  Save this article

Service design and frequency setting for the European high-speed rail network

Author

Listed:
  • Grolle, Jorik
  • Donners, Barth
  • Annema, Jan Anne
  • Duinkerken, Mark
  • Cats, Oded

Abstract

High-speed rail (HSR) is frequently seen as a promising alternative for long-distance travel by air and road, given its environmental advantages whilst offering a competitive level of service. However, a European HSR-network is yet to be realised, with the current state amounting to a patchwork of poorly connected subnetworks. Consequently, this results in a suboptimal performance from a user, operator and societal perspective. We present a customised version of the Transit Network Design and Frequency Setting Problem (TNDFSP) for the long-distance transport context and HSR in particular. We apply an adapted version of a heuristic solution approach to analyse the users’, operators’ and societal performance of a European HSR-network by conducting an extensive series of experiments to test the network’s performance under various policy priorities and HSR design variables. Our experiment results show that designs resulting from the consideration of externalities yield more extensive networks with larger coverage and modal shifts. For such networks to materialise, high public investments are needed. The obtained network designs contain four different line types, exhibit spatial disparities in network density, and allow for the identification of potential hubs and critical infrastructure. The strong network integration with overlapping and border-crossing lines of substantial lengths highlights the importance of cross-border cooperation and rail interoperability. We hope our findings will contribute to the ongoing public and professional debates on designing an attractive and competitive European HSR-network.

Suggested Citation

  • Grolle, Jorik & Donners, Barth & Annema, Jan Anne & Duinkerken, Mark & Cats, Oded, 2024. "Service design and frequency setting for the European high-speed rail network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:transa:v:179:y:2024:i:c:s0965856423003269
    DOI: 10.1016/j.tra.2023.103906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423003269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," ULB Institutional Repository 2013/152140, ULB -- Universite Libre de Bruxelles.
    2. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.
    3. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    4. Han, Anthony F. & Wilson, Nigel H. M., 1982. "The allocation of buses in heavily utilized networks with overlapping routes," Transportation Research Part B: Methodological, Elsevier, vol. 16(3), pages 221-232, June.
    5. Zhang, Fangni & Graham, Daniel J. & Wong, Mark Siu Chun, 2018. "Quantifying the substitutability and complementarity between high-speed rail and air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 191-215.
    6. Albalate, Daniel & Bel, Germà & Fageda, Xavier, 2015. "Competition and cooperation between high-speed rail and air transportation services in Europe," Journal of Transport Geography, Elsevier, vol. 42(C), pages 166-174.
    7. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    8. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    9. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    10. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    11. Philipp Heyken Soares & Christine L. Mumford & Kwabena Amponsah & Yong Mao, 2019. "An adaptive scaled network for public transport route optimisation," Public Transport, Springer, vol. 11(2), pages 379-412, August.
    12. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 720-742, November.
    13. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    14. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    2. Wang, Jiaoe & Huang, Jie & Jing, Yue, 2020. "Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 62-78.
    3. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    4. Bernardo, Valeria & Fageda, Xavier, 2020. "Impacts of competition on connecting travelers: Evidence from the transatlantic aviation market," Transport Policy, Elsevier, vol. 96(C), pages 141-151.
    5. Sunhyung Yoo & Jinwoo Brian Lee & Hoon Han, 2023. "A Reinforcement Learning approach for bus network design and frequency setting optimisation," Public Transport, Springer, vol. 15(2), pages 503-534, June.
    6. Ma, Wenliang & Wang, Qiang & Yang, Hangjun & Zhang, Guoquan & Zhang, Yahua, 2020. "Understanding airline price dispersion in the presence of high-speed rail," Transport Policy, Elsevier, vol. 95(C), pages 93-102.
    7. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    8. Daniel Albalate & Germá Bel, 2015. "La experiencia internacional en alta velocidad ferroviaria," Working Papers 2015-02, FEDEA.
    9. Borsati, Mattia & Albalate, Daniel, 2020. "On the modal shift from motorway to high-speed rail: evidence from Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 145-164.
    10. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    11. Evert Vermeir & Javier Durán-Micco & Pieter Vansteenwegen, 2022. "The grid based approach, a fast local evaluation technique for line planning," 4OR, Springer, vol. 20(4), pages 603-635, December.
    12. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    13. Pomykała, Agata & Engelhardt, Juliusz, 2023. "Concepts of construction of high-speed rail in Poland in context to the European high-speed rail networks," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    14. Chen, Zhenhua, 2017. "Impacts of high-speed rail on domestic air transportation in China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 184-196.
    15. Durán-Micco, Javier & Vansteenwegen, Pieter, 2022. "Transit network design considering link capacities," Transport Policy, Elsevier, vol. 127(C), pages 148-157.
    16. David Schmaranzer & Roland Braune & Karl F. Doerner, 2020. "Population-based simulation optimization for urban mass rapid transit networks," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 767-805, December.
    17. Wu, Shuping & Han, Dan, 2022. "Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 262-284.
    18. Avogadro, Nicolò & Cattaneo, Mattia & Paleari, Stefano & Redondi, Renato, 2021. "Replacing short-medium haul intra-European flights with high-speed rail: Impact on CO2 emissions and regional accessibility," Transport Policy, Elsevier, vol. 114(C), pages 25-39.
    19. Avogadro, Nicolò & Pels, Eric & Redondi, Renato, 2023. "Policy impacts on the propensity to travel by HSR in the Amsterdam – London market," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    20. Zhang, Rui & Johnson, Daniel & Zhao, Weiming & Nash, Chris, 2019. "Competition of airline and high-speed rail in terms of price and frequency: Empirical study from China," Transport Policy, Elsevier, vol. 78(C), pages 8-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:179:y:2024:i:c:s0965856423003269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.