IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v114y2018ipbp272-287.html
   My bibliography  Save this article

A decade of dynamics of residential location, car ownership, activity, travel and land use in the Seattle metropolitan region

Author

Listed:
  • Lee, Jae Hyun
  • Goulias, Konstadinos G.

Abstract

Using data of attitudes in the Puget Sound region we first identify predispositions in favor of car use (car loving persons and households) and distinguish them from other predispositions favoring other modes (transit and carsharing lovers). Then we explore if like-minded people (homophily) live together and examine heterogeneity within their households. To do this we analyze attitudinal data using multilevel latent class clustering that allows identification of groups of persons and groups of households jointly. Our analysis identifies distinct groups of people with different attitudes towards modes and we do not find strong homophily in attitudes within households. The distinction of attitudes among persons transfers well to the household level giving us the opportunity to identify and test differences among the different attitudinal groups using longitudinal records. We then move to a longitudinal analysis using a small sample of households that participated in more than ten years of the Puget Sound panel survey to explore the sequence of their residential location characteristics, car ownership, and travel. We find in descriptive statistics and in a second application of multilevel cluster models that carpool and transit loyalty persists over time by a portion of car pool and transit lovers. We also find sustained use of cars by car loving households, sustained car use of a neutral in attitudes group, a group of younger households with positive attitudes towards carsharing and sustained car sharing over time, and a possibly disenfranchised older household group lacking access to opportunities. The inclusion in the analysis of the two residential location characteristics (evolution of density and diversity around the household residence) enabled a more complete analysis and a clearer description of household context for both attitudes and behavior.

Suggested Citation

  • Lee, Jae Hyun & Goulias, Konstadinos G., 2018. "A decade of dynamics of residential location, car ownership, activity, travel and land use in the Seattle metropolitan region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 272-287.
  • Handle: RePEc:eee:transa:v:114:y:2018:i:pb:p:272-287
    DOI: 10.1016/j.tra.2018.01.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856417310510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.01.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choo, Sangho & Mokhtarian, Patricia L., 2004. "What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 201-222, March.
    2. Wang, Tingting & Chen, Cynthia, 2012. "Attitudes, mode switching behavior, and the built environment: A longitudinal study in the Puget Sound Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1594-1607.
    3. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    4. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    5. Jae Hyun Lee & Adam W. Davis & Seo Youn Yoon & Konstadinos G. Goulias, 2016. "Activity space estimation with longitudinal observations of social media data," Transportation, Springer, vol. 43(6), pages 955-977, November.
    6. Frank S. Koppelman & Patricia K. Lyon, 1981. "Attitudinal Analysis of Work/School Travel," Transportation Science, INFORMS, vol. 15(3), pages 233-254, August.
    7. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    8. Maness, Michael & Cirillo, Cinzia & Dugundji, Elenna R., 2015. "Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior," Journal of Transport Geography, Elsevier, vol. 46(C), pages 137-150.
    9. Bert van Wee, 2009. "Self‐Selection: A Key to a Better Understanding of Location Choices, Travel Behaviour and Transport Externalities?," Transport Reviews, Taylor & Francis Journals, vol. 29(3), pages 279-292, January.
    10. Bhat, Chandra R. & Dubey, Subodh K., 2014. "A new estimation approach to integrate latent psychological constructs in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 68-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prateek Bansal & Akanksha Sinha & Rubal Dua & Ricardo Daziano, 2019. "Eliciting Preferences of Ridehailing Users and Drivers: Evidence from the United States," Papers 1904.06695, arXiv.org.
    2. Jingyi Xiao & Konstadinos G. Goulias & Srinath Ravulaparthy & Shivam Sharda & Ling Jin & C. Anna Spurlock, 2024. "Evaluating the Impacts of Autonomous Electric Vehicles Adoption on Vehicle Miles Traveled and CO 2 Emissions," Energies, MDPI, vol. 17(23), pages 1-19, December.
    3. Scheiner, Joachim, 2020. "Changes in travel mode use over the life course with partner interactions in couple households," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 791-807.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thurner, Thomas & Fursov, Konstantin & Nefedova, Alena, 2022. "Early adopters of new transportation technologies: Attitudes of Russia’s population towards car sharing, the electric car and autonomous driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 403-417.
    2. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.
    3. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    4. Sascha von Behren & Lisa Bönisch & Ulrich Niklas & Bastian Chlond, 2020. "Revealing Motives for Car Use in Modern Cities—A Case Study from Berlin and San Francisco," Sustainability, MDPI, vol. 12(13), pages 1-18, June.
    5. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    6. Vale, David S., 2013. "Does commuting time tolerance impede sustainable urban mobility? Analysing the impacts on commuting behaviour as a result of workplace relocation to a mixed-use centre in Lisbon," Journal of Transport Geography, Elsevier, vol. 32(C), pages 38-48.
    7. Peters, Anja & Mueller, Michel G. & de Haan, Peter & Scholz, Roland W., 2008. "Feebates promoting energy-efficient cars: Design options to address more consumers and possible counteracting effects," Energy Policy, Elsevier, vol. 36(4), pages 1355-1365, April.
    8. Hess, Stephane & Spitz, Greg & Bradley, Mark & Coogan, Matt, 2018. "Analysis of mode choice for intercity travel: Application of a hybrid choice model to two distinct US corridors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 547-567.
    9. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    10. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    11. Ory, David T, 2007. "Structural Equation Modeling of Relative Desired Travel Amounts," Institute of Transportation Studies, Working Paper Series qt8mj659fp, Institute of Transportation Studies, UC Davis.
    12. de Jong, Gerben & Behrens, Christiaan & van Herk, Hester & Verhoef, Erik, 2022. "Airfares with codeshares: (why) are consumers willing to pay more for products of foreign firms with a domestic partner?," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 1-18.
    13. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "Normative beliefs and modality styles: a latent class and latent variable model of travel behaviour," Transportation, Springer, vol. 45(3), pages 789-825, May.
    14. Biswas, Mehek & Bhat, Chandra R. & Pinjari, Abdul Rawoof, 2024. "The use of pooled RP-SP choice data to simultaneously identify alternative attributes and random coefficients on those attributes," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    15. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    16. Jindo Jeong & Jiwon Lee & Tae‐Hyoung Tommy Gim, 2022. "Travel mode choice as a representation of travel utility: A multilevel approach reflecting the hierarchical structure of trip, individual, and neighborhood characteristics," Papers in Regional Science, Wiley Blackwell, vol. 101(3), pages 745-765, June.
    17. Ory, David Terrance, 2007. "Structural Equation Modeling of Relative Desired Travel Amounts," University of California Transportation Center, Working Papers qt7rb3x52m, University of California Transportation Center.
    18. Bhat, Chandra R. & Mondal, Aupal, 2022. "A New Flexible Generalized Heterogeneous Data Model (GHDM) with an Application to Examine the Effect of High Density Neighborhood Living on Bicycling Frequency," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 244-266.
    19. Ivan K. W. Lai & Yide Liu & Xinbo Sun & Hao Zhang & Weiwei Xu, 2015. "Factors Influencing the Behavioural Intention towards Full Electric Vehicles: An Empirical Study in Macau," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
    20. Kroesen, Maarten & Chorus, Caspar, 2020. "A new perspective on the role of attitudes in explaining travel behavior: A psychological network model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 82-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:114:y:2018:i:pb:p:272-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.